-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path02.vb.cpp
306 lines (274 loc) · 10.6 KB
/
02.vb.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
// 02.vb.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#include <iostream>
#include <vector>
#include "MSABR.h"
#include "CConstraints.h"
#include "CNealderMead.h"
#include "cmat.h"
#include "xlsread.h"
#include "ofmt.h"
#include "Black76.h"
//==============================================================================
// Containers to hold excel data in C++ app.
//==============================================================================
Matrix<double> cm_FixedRates;
std::vector<std::string > row_FixedRates;
std::vector<std::string > row_tenor_FixedRates;
std::vector<std::string > col_FixedRates;
Matrix<double> cm_MktVol;
Matrix<double> cm_K;
Matrix<double> cm_Expiry;
Matrix<double> cm_Fwd;
Matrix<double> cm_StrikeRates_K;
Matrix<double> cm_ModelVol;
Matrix<double> cm_ATMmktVol; // rows are Expiry and ols are Tenor 1 2 3 4 5 7 10 15 20 25 30
Matrix<double> cm_BetRhoNu;
std::map<int, std::vector<int> >ATMmktVolKeys; // Key:Row Val:Exiry Tenor.
std::map<int, int >ATMmktVolKeysRow; /// Key: Expiry Val: Row
std::map<int, int >ATMmktVolKeysCol; //Key: Tenor Val: Col
// Some hard coded transfer of data from excel to this app
void populateATMmktVolKeysRow(std::map<int, int >& map)
{
// Expiry - Key is Expiry. Val is Row
// To get access to Matrix for Market ATM Vol
map[1] = 0;
map[2] = 1;
map[3] = 2;
map[4] = 3;
map[5] = 4;
map[7] = 5;
map[10] = 6;
map[15] = 7;
map[20] = 8;
map[25] = 9;
map[30] = 10;
}
void populateATMmktVolKeysCol(std::map<int, int >& map)
{
//L"Data", "E39:N39"
//Row values of ATM Vol Tenor
map[1] = 0;
map[2] = 1;
map[3] = 2;
map[4] = 3;
map[5] = 4;
map[7] = 5;
map[10] = 6;
map[20] = 7;
map[30] = 8;
}
// To do .....collect this info in a Matrix as opposed to hard copy.
void populateATMmktVolKeys(std::map<int, std::vector<int> >& map)
{//Market implied swaption volatilities
// L"Data", L"P40:Q59"
//Expiry Tenor
map[0] = { 5,2 };
map[1] = { 10,2 };
map[2] = { 20,2 };
map[3] = { 30,2 };
map[4] = { 5,5 };
map[5] = { 10,5 };
map[6] = { 20,5 };
map[7] = { 30,5 };
map[8] = { 5,10 };
map[9] = { 10,10 };
map[10] = { 20,10 };
map[11] = { 30,10 };
map[12] = { 5,20 };
map[13] = { 10,20 };
map[14] = { 20,20 };
map[15] = { 30,20 };
map[16] = { 5,30 };
map[17] = { 10,30 };
map[18] = { 20,30 };
map[19] = { 30,30 };
}
void initLocalCalibration(Matrix<double>& matrix, int M, int N)
{
vector<double> first = matrix.slice(0);
matrix = matrix.newsize(M, N);
for (int i = 0; i < M; ++i) {
matrix.setRow(i, 0, first[0]);
matrix.setRow(i, 1, first[1]);
matrix.setRow(i, 2, first[2]);
}
}
//==============================================================================
// Variables and containers for SABR related computations.
//==============================================================================
std::vector<double> Alphas;
double fwd = 0; // forward rate.
double tau = 0; // years
double atm = 0;
double bet = 0;
double rho = 0;
double nu = 0;
int rows = 0;
int cols = 0;
//==============================================================================
// Functions called from NealderMead algorithm.
// This is called from MyFunction.
//==============================================================================
double gnm_range_sumxmy2(std::vector<double>& MktVol, std::vector<double>& ModelVol,
int row)
{
double s = 0;
int i;
for (i = 0; i < MktVol.size(); i++) {
s += pow((ModelVol[i] - MktVol[i]), 2);
}
return s;
}
// main calls MyFunction on a row of data to calculate alpha, beta, rho, nu.
// Each column of this row represents a different strike K.
// MyFunction calls NealderMead algorithm
// In NealderMead algorithm:
// SolveMinium via iteration calls CheckConvergence.
// Shrink calls CalculateNewApex
// SolveMinimum via iteration calls CalculateNewApex
// CalculateNewApex, GetInitialSimplex calls ApexEvaluate
// ApexEvaluate calls RunFUnction
// RunFunction calls MyFunction
// When converged, it goes onto next row of data to calculate alpha beta, rho, nu
int row = 0;
int Iter = 0;
double MyFunction(std::vector<double>& py, bool Converged ) // default Converged = false
{
double bet = py[0];
double rho = py[1];
double nu = py[2];
double Fwd = cm_FixedRates[row][0];
double error;
double y = 0.0;
// calculate initial alpha
double tau = cm_Expiry[row][0];
int Expiry = ATMmktVolKeys[row][0];
int Tenor = ATMmktVolKeys[row][1];
int atmRow = ATMmktVolKeysRow[Expiry];
int atmCol = ATMmktVolKeysCol[Tenor];
double atm = cm_ATMmktVol[atmRow][atmCol];
double a0 = AlphaInitial(Fwd,tau,atm,bet,rho,nu);
Alphas[row] = a0;
// caculate row of SABR Vol
// cols is from dimension of MktVol
for (int i = 0; i < cols; ++i) {
double strikeRates = cm_StrikeRates_K[row][i];
double vol = SABR_BlackVol_InitialAlpha(Fwd, strikeRates, tau, a0, bet, rho, nu, "Obloj2008");
cm_ModelVol[row][i] = vol;
}
cm_BetRhoNu[row][0] = bet;
cm_BetRhoNu[row][1] = rho;
cm_BetRhoNu[row][2] = nu;
std::vector<double> MktVol = cm_MktVol.slice(row);
std::vector<double> ModelVol = cm_ModelVol.slice(row);
y = gnm_range_sumxmy2(MktVol, ModelVol, row);
Iter++;
// Impose the constraint that - 1 <= rho <= +1 and that v>0
if (abs(rho) > 1 || nu < 0)
y = 1e100;
if (Converged == true) {
//std::cout << " row " << row << "\t" << " error " << y << "\t" << " beta " << bet << "\t" << " rho " << rho << "\t" << " nu " << nu << "\t" << " a0 " << a0 << "\t";
//std::cout << " Fwd " << Fwd << "\t" << " tau " << tau << "\t" << " Expiry " << Expiry << "\t" << " Tenor " << Tenor << "\t" << " atm " << atm << std::endl;
//std::cout << " row " << row << " beta " << bet << "\t" << " rho " << rho << "\t" << " nu " << nu << "\t" << " a0 " << a0 << std::endl;
}
if (Converged == true) {
std::cout << "Row " << row << " Count " << Iter << std::endl;
++row;
Iter = 0;
}
return y;
}
//==============================================================================
// End of functions called from NealderMead
//==============================================================================
int main(int argc, char * argv[])
{
//wchar_t* XLSPATH = (wchar_t*)argv[1];
wchar_t* XLSPATH = L"H:\\github\\workdir.2018\\SABR.NelderMead_Studies_2\\Swaption_Volatility_SABR_Calibration.xls";
std::cout << "Fetching data from spreadsheet. Tenor and Exp are on s/h" << std::endl;
// Fetch data from spreadsheets
xlsread(XLSPATH, L"Data", L"T13:T32", cm_FixedRates);
xlsreadLabels(XLSPATH, L"Data", L"I12:I32", row_FixedRates);
xlsreadLabels(XLSPATH, L"Data", L"J12:J32", row_tenor_FixedRates);
xlsreadLabels(XLSPATH, L"Data", L"T11", col_FixedRates);
xlsread(XLSPATH, L"SABR(Implied Alpha)", L"D9:L28", cm_MktVol);
xlsread(XLSPATH, L"SABR(Implied Alpha)", L"D8:L8", cm_K);
xlsread(XLSPATH, L"SABR(Implied Alpha)", L"N9:N28", cm_Expiry);
xlsread(XLSPATH, L"Data", L"X13:AF32", cm_StrikeRates_K);
xlsread(XLSPATH, L"Data", L"F40:N50", cm_ATMmktVol);
xlsread(XLSPATH, L"SABR(Implied Alpha)", L"O37:Q37", cm_BetRhoNu);
std::cout << "=================Excel Input: Local Calibration for NelderMead: Beta Rho Nu ===========" << std::endl;
initLocalCalibration(cm_BetRhoNu, cm_MktVol.num_rows(),3 );
print_2Dmatrix(cm_BetRhoNu);
std::cout << "=================Excel Input: Fixed Rates ===========" << std::endl;
print_2Dmatrix(cm_FixedRates);
std::cout << "================= Excel Input: MktVol ===========" << std::endl;
print_2Dmatrix(cm_MktVol);
std::cout << "================= Excel Input: K ===========" << std::endl;
print_2Dmatrix(cm_K);
std::cout << "================= Excel Input: StrikeRates_K ===========" << std::endl;
print_2Dmatrix(cm_StrikeRates_K);
std::cout << "================= Excel Input: ATMmktVol ===========" << std::endl;
print_2Dmatrix(cm_ATMmktVol);
// Redo this three 'populate' functions to use xlsread.
populateATMmktVolKeys(ATMmktVolKeys);
populateATMmktVolKeysRow(ATMmktVolKeysRow);
populateATMmktVolKeysCol(ATMmktVolKeysCol);
// Resize needed Matrices based on fetched data from spreadsheets
rows = cm_MktVol.num_rows();
cols = cm_MktVol.num_cols();
cm_ModelVol.newsize(rows, cols);
Alphas.resize(rows);
Matrix<double> blackP; blackP.newsize(rows, cols);
Matrix<double> blackC; blackC.newsize(rows, cols);
Matrix<double> parity; parity.newsize(rows, cols);
// Add Constraints.. how used?
CNelderMead nmopt;
// nmopt.AddSingleConstraint(0, "=", 0);
nmopt.AddSingleConstraint(0, "<", 1);
nmopt.AddSingleConstraint(0, ">", -1);
nmopt.AddSingleConstraint(1, "<=", 1);
nmopt.AddSingleConstraint(1, ">=", -1);
nmopt.AddSingleConstraint(2, ">=", -1);
nmopt.AddSingleConstraint(2, "=>", -1);
nmopt.SetFunctionName("MyFunction");
std::cout << "================= SABR Model Output: NelderMead Iterations to Converge ========== = " << std::endl;
std::cout << "================= for each row of SABR parameters ===========" << std::endl;
// iterate through rows to calculate SABR pertubation parameters.
std::vector<double> initguess = cm_BetRhoNu.slice(0);
for (int i = 0; i < rows; ++i)
{
// Step 1. Get initial beta, rho and nu.
// initguess.push_back(i);
// Step 2. Run Nelder Mead to get a converged beta rho and nu
// SolveMinimum will call MyFunction via RunFunction, via ApexEvaluate
// When SolveMinimum returns it will have a set of converged parameters
// and also a tested return for MyFunction.
double rem = MyFunction(nmopt.SolveMinimum(initguess), true);
}
// iterate through rows to calculate Black-76 Put Call and Parity
double r = .02;
for (int i = 0; i < rows; ++i) {
for (int j = 0; j < cols; ++j)
{
blackP[i][j] = Black76(cm_FixedRates(i, j), cm_StrikeRates_K(i, j), cm_Expiry(i, 0), cm_ModelVol(i, j), r, "Put");
blackC[i][j] = Black76(cm_FixedRates(i, j), cm_StrikeRates_K(i, j), cm_Expiry(i, 0), cm_ModelVol(i, j), r, "Call");
parity[i][j] = diffInPutCallParity(blackC(i, j), blackP(i, j), cm_FixedRates(i, j), cm_StrikeRates_K(i, j), r, cm_Expiry(i, 0));
}
}
std::cout << "================= SABR Model Output: Beta Rho Nu (via NelderMead's RunFunction/MyFunction) ===========" << std::endl;
print_2Dmatrix(cm_BetRhoNu);
std::cout << "================= SABR Model Output: Alpha (via NelderMead's RunFunction/MyFunction) ===========" << std::endl;
print_vector(Alphas);
std::cout << "================= SABR Model Output: SABR volatilities (via NelderMead's RunFunction/MyFunction) ===========" << std::endl;
print_2Dmatrix(cm_ModelVol);
std::cout << "================= Black 76 Puts ===========" << std::endl;
print_2Dmatrix(blackP);
std::cout << "================= Black 76 Calls ===========" << std::endl;
print_2Dmatrix(blackC);
std::cout << "================= Black 76 Diffs in Put Call Parity ===========" << std::endl;
print_2Dmatrix(parity);
return 0;
}