-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgenerate_cifar.py
63 lines (49 loc) · 2.23 KB
/
generate_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
from omegaconf import OmegaConf
from argparse import ArgumentParser
import wandb
import numpy as np
import torch
import torch.multiprocessing as mp
from models.tddpmm import TDDPMm
from generate_imagenet import uncond_generate
def main(args):
config = OmegaConf.load(args.config)
device = torch.device('cuda')
if args.log:
config.use_wandb = True
else:
config.use_wandb = False
config.seed = args.seed
torch.manual_seed(args.seed)
if args.log:
run = wandb.init(entity=config['log']['entity'],
project=config['log']['project'],
group=config['log']['group'],
config=config,
reinit=True,
settings=wandb.Settings(start_method='fork'))
model = TDDPMm(config).to(device)
model.requires_grad_(False)
ckpt_dir = os.path.join('exp', config.log.logname, 'ckpts')
outdir = os.path.join('exp', config.log.logname, 'images')
os.makedirs(outdir, exist_ok=True)
ref_path = 'https://nvlabs-fi-cdn.nvidia.com/edm/fid-refs/cifar10-32x32.npz'
for i in range(args.start, args.end + args.step, args.step):
ckpt_path = args.ckpt if args.ckpt else os.path.join(ckpt_dir, f'solver-model_{i}.pt')
ckpt = torch.load(ckpt_path, map_location=device)
model.load_state_dict(ckpt['ema'])
print(f'generate images from checkpoint {i}.pt')
uncond_generate(model, config, device, outdir, batch=args.batchsize, num_imgs=args.num_imgs)
print('Done!')
if __name__ == '__main__':
torch.backends.cudnn.benchmark = True
parser = ArgumentParser(description='Basic parser')
parser.add_argument('--config', type=str, default='configs/cifar/tddpmm_t4-quad-snr-256-vgg-radam.yaml', help='configuration file')
parser.add_argument('--ckpt', type=str, default=None, help='Checkpoint to initialize the model')
parser.add_argument('--batchsize', type=int, help='batchsize', default=100)
parser.add_argument('--num_imgs', type=int, default=50000)
parser.add_argument('--log', action='store_true', help='turn on the wandb')
parser.add_argument('--seed', type=int, default=321)
args = parser.parse_args()
main(args)