-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathseam_insertion.py
102 lines (79 loc) · 3.29 KB
/
seam_insertion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import get_seam
import numpy as np
import seam_removal
# average func
def aveg(output_list, j):
if j == 0:
return (output_list[0]+output_list[1])/2
else:
return (output_list[j]+output_list[j-1])/2
#inserting columns
def col_insertion(img, change):
img_new = img
seam_global = []
# removing columns in duplicate image and storing the seams
for i in range(change):
if i%10 == 0:
print("Inserted %s columns"%(i))
n, m, depth = img.shape
seam = get_seam.get_seam_horizontal(img)
seam_global.append(np.array(seam)+i)
output = np.zeros((n, m-1, depth))
for row in range(n):
col = seam[row]
output[row, :, 0] = np.delete(img[row, :, 0], col)
output[row, :, 1] = np.delete(img[row, :, 1], col)
output[row, :, 2] = np.delete(img[row, :, 2], col)
img = output.astype(np.uint8)
seam_global = np.array(seam_global).T
n, m, depth = img_new.shape
output = np.zeros((n, m+change, depth))
# using the seams to insert new columns in the original image
for row in range(n):
output[row, :, 0][:m] = img_new[row, :, 0]
output[row, :, 1][:m] = img_new[row, :, 1]
output[row, :, 2][:m] = img_new[row, :, 2]
for row, i in enumerate(seam_global):
count = 0
for j in i:
output[row, :, 0] = np.insert(output[row, :, 0], j+count, aveg(output[row, :, 0], j))[:-1]
output[row, :, 1] = np.insert(output[row, :, 1], j+count, aveg(output[row, :, 1], j))[:-1]
output[row, :, 2] = np.insert(output[row, :, 2], j+count, aveg(output[row, :, 2], j))[:-1]
count += 1
return output.astype(np.uint8)
####################################
#inserting rows
def row_insertion(img, change):
img_new = img.T
seam_global = []
# removing rows in duplicate image and storing the seams
for i in range(change):
if i%10 == 0:
print("Inserted %s rows"%(i))
img_t = img.T
depth, n, m = img_t.shape
seam = get_seam.get_seam_vertical(img)
seam_global.append(np.array(seam)+i)
output = np.zeros((depth, n, m-1))
for row in range(n):
col = seam[row]
output[0, row, :] = np.delete(img_t[0, row, :], col)
output[1, row, :] = np.delete(img_t[1, row, :], col)
output[2, row, :] = np.delete(img_t[2, row, :], col)
img = output.T.astype(np.uint8)
seam_global = np.array(seam_global).T
depth, n, m = img_new.shape
output = np.zeros((depth, n, m+change))
# using the seams to insert new rows in the original image
for row in range(n):
output[0, row, :][:m] = img_new[0, row, :]
output[1, row, :][:m] = img_new[1, row, :]
output[2, row, :][:m] = img_new[2, row, :]
for row, i in enumerate(seam_global):
count = 0
for j in i:
output[0, row, :] = np.insert(output[0, row, :], j+count, aveg(output[0, row, :], j))[:-1]
output[1, row, :] = np.insert(output[1, row, :], j+count, aveg(output[1, row, :], j))[:-1]
output[2, row, :] = np.insert(output[2, row, :], j+count, aveg(output[2, row, :], j))[:-1]
count += 1
return output.T.astype(np.uint8)