-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstraints.jl
478 lines (417 loc) · 15.9 KB
/
constraints.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
using LazyGrids
using PyPlot
using Statistics
using Interpolations
# Someday it would be nice to use the following for the Properties
#using Measurements
import FromFile: @from
@from "adm.jl" using ADM_mod
# We don't actually call get_Lambda here, we assume it's an input
#@from "get_Lambda/get_lambda.jl" using Get_Lambda_module
#include("Get_Lambda.jl")
#using .Get_Lambda
# Defining constants
# Defining global constants
# Move constants from above if they end up being used in subfunctions
# Hopefully, these should just be fundamental physical constants
const G_cgs = 6.67259e-8 # cgs
const kb_keV = 8.617e-8 # keV/K
const kb_geV = 8.617e-14 # GeV/K
const kb_erg = 1.38065e-16 # erg/K
const planck = 4.135667696e-18 # keV*s
const age_of_universe = 13.797 # Gyr
const c_cm = 2.998e10 # cm/s
const c_km = 2.998e5 # km/s
const kev_to_erg = 1.602e-9
# Using Planck 2018 data for cosmological constants
h = 0.67019
H0_base = 100*h # in (km/s)/Mpc
H0 = H0_base*3.24078e-20 # 1/s
OmegaM = 0.12029/h^2
OmegaB = 0.0222/h^2
OmegaR = 2.488e-5/h^2
OmegaDM = OmegaM-OmegaB
OmegaADM(epsilon) = epsilon * OmegaDM
OmegaL = 0.6889
Omega = OmegaM
delta = 18*pi^2
const s_to_gy = 3.17098e-17
const gy_to_s = 3.154e16
const m_sol_to_g = 1.9891e33
const g_to_gev = 5.6096e23
const gev_to_g = 1/g_to_gev
# Proton and electron masses
#mP = 0.938 # GeV
#mE = 511 # keV
#alpha = 0.00729
H(a) = H0*sqrt(OmegaL + OmegaM./a.^3 + OmegaR./a.^4 + (1-OmegaL-OmegaM-OmegaR)./a.^2)
rho_cr(z) = 3*H(1.0./(1+z)).^2/(8*pi*G_cgs)
delta_c = 18*pi^2
rho_0 = 3*H0^2/(8*pi*G_cgs)
rho_v(z) = OmegaDM*rho_cr(z)
# Mass-loss type constraint
# Can provide either E_tot and x_DM or E_dens and n_DM
# returns Lambda
function m_loss_constraint(f_lost,v_coll,Sigma_s,m_H;E_tot=nothing,E_dens=nothing,n_DM=nothing,x_DM=nothing)
if isnothing(E_dens) && isnothing(E_tot)
throw(ArgumentError("must provide either E_dens or E_tot"))
elseif isnothing(E_dens)
Lambda = ((f_lost .* E_tot .* v_coll) ./ Sigma_s) .* (m_H ./ x_DM)
else
Lambda = ((f_lost .* E_dens .* v_coll) ./ Sigma_s) .* (m_H ./ n_DM)
end
return Lambda
end
# Structure formation type constraint
# returns Lambda
function struc_form_constraint(E_dens,tff,nDM)
Lambda = ((E_dens) ./ tff) .* (1 ./ nDM) .^ 2
return Lambda
end
# Calculate freefall time
# returns tff
function tff(rho)
t_ff = sqrt(1 ./(G_cgs .* rho))
return t_ff
end
# Calculate total energy from temperature
# return E_tot in ergs
function E_tot(T;gamma=nothing)
if isnothing(gamma)
gamma = 5/3
end
return kb_erg * T / (gamma - 1)
end
# Calculate total energy density from temperature and number density
# return E_dens in ergs/cm^3
function E_dens(T,n;gamma=nothing)
if isnothing(gamma)
gamma = 5/3
end
return n .* kb_erg .* T / (gamma - 1)
end
# Calculate virial temp from halo mass
# Ideally, this would be replaced by a library call
# Note that rho and mh need to be in CGS, Mv in Msol
# returns T_virial
function Tv(rho,Mv,mh;dens_prof=3/5)
Mv = Mv * m_sol_to_g # convert to g
Tv = (4 / 3 * pi * rho)^(1 / 3) * 1 / 2 * dens_prof * mh * G_cgs * Mv^(2 / 3) / kb_erg
end
# Calculate number density as a function of z assuming 3 sigma overdensity
# Comes from the paragraph above eq 8.92 in MBW
# inputs: mh in GeV, redshift
# returns n in cm^-3
function nofz(mh,z;f=OmegaADM(1),mu=1,delta=delta)
# f = M_halo_DM/M_halo * epsilon
return 1.05367e-5 .* f ./ (mu .* mh) .* (1 .+ delta).*(Omega .* h.^2) .* (1 .+ z).^3
end
@enum cons_dir above below # direction of constraint - above means constrains from above=upper limit on Lambda
EmptyParam=Union{Float64,Array{Float64},Some{Array{Float64}},Nothing}
EmptyFun=Union{Function,Some{Function},Nothing}
@kwdef struct Properties
Mhalo = nothing
z = nothing
Sigma_T = nothing
v_c=nothing
f_lost=nothing
direction::cons_dir=above
x_D::EmptyFun=nothing
allow_any::Bool=false
end
#Properties()
# Get LSS properties from Hennig et al 2017
# returns M_scale, z, Sigma_T, v_c, f_lost, direction, nothing
function getLSSProperties()
M=[6.3000,5.2000,5.9000,6.1000,17.5000,10.2000,25.7000,5.3000,11.7000,
6.1000,13.2000,5.4000,6.5000,5.2000,4.5000,8.8000,5.5000,5.2000,
6.3000,7.6000,4.3000,5.8000,5.4000,18.7000,9.3000,6.5000,8.2000,
8.8000,4.6000,5.7000,5.2000,7.2000,6.9000,9.1000,5.6000,5.2000,6.3000,
5.1000,5.5000,4.8000,6.0000,7.2000,5.2000,5.4000,6.6000,8.5000,5.8000,
9.1000,11.4000,12.3000,5.8000,5.9000,7.9000,6.3000,6.2000,5.2000,5.1000,7.1000,
9.5000,5.2000,21.1000,6.2000,13.2000,7.0000,28.0000,28.9000,4.7000,5.8000,6.5000,
5.0000,9.3000,7.7000,6.8000,6.1000]*1e14
#M = [M,7e13]
a0 = delta_c*rho_0
a1 = 5.77
function truncatedSigma(a0,a1,x,c)
if x<1
F = (sqrt(c^2-x^2)/(1+c) - acosh((c+x^2)/(x+x*c))/sqrt(1-x^2))/(x^2-1)
else
F = (sqrt(c^2-x^2)/(1+c) - acos((c+x^2)/(x+x*c))/sqrt(x^2-1))/(x^2-1)
end
f = 2*a0*a1*F
return f
end
#println("truncated sigma:$(truncatedSigma(a0,a1,1e-30,5.77))")
z=[0.89,0.39,0.4,0.87,0.39,0.36,0.88,0.6,0.45,0.28,0.6,0.67,0.6,
0.63,1.05,0.66,0.75,0.53,0.23,0.07,1.12,0.7,0.28,0.42,0.39,
0.43,0.4,0.8,0.95,0.58,0.99,1.11,0.42,0.8,0.41,0.44,0.88,0.65,
0.43,0.2,0.24,0.15,0.83,0.8,0.22,0.29,0.43,0.46,0.4,0.29,0.91,
0.18,0.81,0.33,0.75,0.58,0.85,0.75,0.48,0.81,0.42,0.74,0.4,
0.31,0.33,0.37,0.75,0.45,0.17,0.76,0.42,0.98,0.43,0.55]
#z = [z,0.296]
# Total observed surface mass density of the Bullet Cluster(?)
Sigma_T = 0.25 # cm^-2 g,
v_c = 1000 * 1000 * 100 # 1000 km/s
f_lost = [0.01,0.1,0.3]
direction = above
# yes there's a better way to do this and I can't figure it out at the moment
M, = ndgrid(M,f_lost)
z,f_lost = ndgrid(z,f_lost)
props = Properties(;Mhalo=M,z,Sigma_T,v_c,f_lost,direction)
return props
end
# Get DwGal properties from McConnachie 2012 and Herrmann 2016
# returns M_scale, z, Sigma_T, v_c, f_lost, direction, nothing
function getDwGalProperties()
M=sort([1.9e+08, 3.9e+06, 3.3e+06, 230000, 270000, 940000, 810000,
1.1e+07, 9.5e+06, 1.4e+07, 2.5e+07, 1.1e+07, 6.3e+06, 2.6e+06,
5.6e+07, 1.3e+06, 910000, 1.1e+06, 1.9e+07, 4.6e+06, 1.2e+07,
5.4e+08, 6.5e+06, 4.2e+08, 4.4e+07, 6.1e+06, 2.3e+06, 1.2e+06,
9.3e+07, 6.1e+06, 1.6e+07, 1.1e+07, 3.6e+07, 1.5e+08, 4.2e+07,
1.7e+07, 3.9e+06, 3.8e+08, 2.5e+07, 4.1e+07,])
z=zeros(size(M))
Sigma_T = 1e-3 # Approximation from Herrmann 2016
v_c = 100 * 1000 * 100# km/s
f_lost = [0.5]
direction = below
M, = ndgrid(M,f_lost)
z,f_lost = ndgrid(z,f_lost)
props = Properties(;Mhalo=M,z,Sigma_T,v_c,f_lost,direction)
return props
end
# Get DBC properties from Lee 2021
# returns M_scale, z, Sigma_T, v_c, f_lost, direction, x_D(rM)
function getDBCProperties()
Md = [3, 3.88, 5]*1e9
z = [0.02]
Sigma_T = [1,10] # Msol/pc^2
Sigma_T = Sigma_T*2.088e-4 # g/cm^2
vs = [100:100:900;] * 1000 * 100 # Note the ; converts this into an Array!
Mgas = [0.6, 1.68, 2.2]*1e9
f_lost = [0.01,0.1,0.3]
# Still looking for a better way of doing this. Maybe just list comprehensions?
Md,zSvMgf = ndgrid(Md,vec(collect(Iterators.product(z,Sigma_T,vs,Mgas,f_lost))))
M = Md
z=getindex.(zSvMgf,1)
Sigma_T=getindex.(zSvMgf,2)
vs=getindex.(zSvMgf,3)
Mgas = getindex.(zSvMgf,4)
f_lost = getindex.(zSvMgf,5)
xDf(rX) = Md ./ (Md .+ rX .* Mgas)
direction = above
props = Properties(M,z,Sigma_T,vs,f_lost,direction,xDf,false)
return props
end
# Check that Milky Way doesn't collapse
function getMWProperties()
# Only need Mhalo, z, and direction for struc formation constraint
# from 1804.11348
Mhalo = 1.54e12
# interested in structure formation era, so z=5,10,15?
z = [5 10 15]
direction = above
return Properties(;Mhalo,z,direction)
end
# Based off of 2009.05209
function getDCOProperties()
# 10^6 - 10^9 halos collapse
Mhalo = 10 .^ range(6,9,length=10)
# structure formation era
z = [5 10]
direction = below
# Constraint passed if any halo passed
allow_any=true
return Properties(;Mhalo,z,direction,allow_any)
end
# Calculate the mass-loss constraint specified by properties
# returns Lambda_cons, direction::cons_dir, n, T
function calcMassLossConstraint(properties::Properties,adm::ADM)
# properties() will return Mhalo, z, Sigma_T, v_c, f_lost, direction, and optionally x_D
(;Mhalo, z, Sigma_T, v_c, f_lost, direction, x_D) = properties
#println("Properties: Mhalo:$Mhalo z:$z Sigma_T:$Sigma_T v_c:$v_c f_lost:$f_lost direction:$direction x_D:$x_D")
n = nofz(adm.M,z)
T = Tv.(adm.M_mass .* n, Mhalo, adm.M_mass)
# Check if we have x_D - if so, use E_tot+x_d, otherwise E_dens+n_dm
#f_lost, v_coll, Sigma_s, m_H; E_tot+x_DM,E_dens+n_DM
has_x = !isnothing(x_D)
Lambda_cons = m_loss_constraint(f_lost,v_c,Sigma_T,adm.M_mass;
E_tot=has_x ? E_tot(T) : nothing,
E_dens=!has_x ? E_dens(n,T) : nothing,
x_DM=has_x ? x_D(adm.rM) : nothing,
n_DM=!has_x ? n : nothing # Revisit this. It's supposed to be n_DM
)
# This currently can produce upwards of 100 lines for certain properties
# (Looking at you getDBCProperties). Which takes forever to run
# get_Lambda on. So we'll reduce to 3 lines - max at every M, min at every
# M, and median
if size(Lambda_cons,2)>3
max_inds = argmax(Lambda_cons,dims=2)
med = median(Lambda_cons,dims=2)
med_inds = argmin(abs.(Lambda_cons.-med),dims=2)
min_inds = argmin(Lambda_cons,dims=2)
inds = [min_inds med_inds max_inds]
return @views Lambda_cons[inds], direction, n[inds], T[inds]
end
return Lambda_cons,direction,n,T
end
function calcMassLossConstraint(properties::Function,adm::ADM)
return calcMassLossConstraint(properties(),adm)
end
# Check if provided cooling violates the mass-loss constraint specified
# by properties
function checkMassLossConstraint(Lambda,properties,adm::ADM;n_test=nothing)
Lambda_cons, direction, n, T = calcMassLossConstraint(properties,adm)
if isnothing(n_test)
Lambda_test = Lambda.(n,T;adm)
else
Lambda_test = Lambda.(n_test,T;adm)
end
# Could write this with short-circuiting booleans, but this is cleaner
check = direction==above ? Lambda_test.<=Lambda_cons : Lambda_test.>=Lambda_cons
if ndims(check)==2
acheck = []
for i = 1:size(check)[2]
push!(acheck,all(check[:,i]))
end
return acheck
elseif ndims(check)>2
throw(ErrorException("I don't know how to handle $(ndims(check)) dimensions"))
else
return all(check)
end
end
# Calculate the structure-formation constraint specified by properties
# returns Lambda_cons, direction::cons_dir, n, T
function calcStrucFormConstraint(properties::Properties,adm::ADM)
(;Mhalo, z, direction) = properties
n = nofz(adm.M,z)
T = Tv.(adm.M_mass .* n,Mhalo, adm.M_mass;dens_prof=2) # dens_prof=2 is equivalent to Buckley version
rho = adm.M_mass * n # note this should include a factor of mu, but we'll assume it's 1
Lambda_cons = struc_form_constraint.(E_dens.(n,T),tff.(rho),n)
if size(Lambda_cons,2)>3
max_inds = argmax(Lambda_cons,dims=2)
med = median(Lambda_cons,dims=2)
med_inds = argmin(abs.(Lambda_cons.-med),dims=2)
min_inds = argmin(Lambda_cons,dims=2)
inds = [min_inds med_inds max_inds]
return @views Lambda_cons[inds], direction, n[inds], T[inds]
end
return Lambda_cons,direction,n,T
end
function calcStrucFormConstraint(properties::Function,adm::ADM)
return calcStrucFormConstraint(properties(),adm)
end
# We'll duplicate for now, but we can probably combine with checkMassLossConstraint
function checkStrucFormConstraint(Lambda,properties::Properties,adm::ADM;n_test=nothing)
Lambda_cons, direction, n, T = calcStrucFormConstraint(properties,adm)
if isnothing(n_test)
Lambda_test = Lambda.(n,T,adm=adm)
else
Lambda_test = Lambda.(n_test,T,adm=adm)
end
check = direction==above ? Lambda_test.<=Lambda_cons : Lambda_test.>=Lambda_cons
if properties.allow_any
any_all = any
else
any_all = all
end
if ndims(check)==2
acheck = []
for i = 1:size(check)[2]
push!(acheck,any_all(check[:,i]))
end
return acheck
elseif ndims(check)>2
throw(ErrorException("I don't know how to handle $(ndims(check)) dimensions"))
else
return any_all(check)
end
end
function checkStrucFormConstraint(Lambda,properties::Function,adm::ADM;n_test=nothing)
return checkStrucFormConstraint(Lambda,properties(),adm;n_test)
end
# Common function for constraint processing
# Input: Lambda(n,T,dark_params), constraint_type (0=mass-loss,1=structure-formation)
# properties() - function that returns the necessary properties for the constraint
# i.e., for a mass-loss, returns Mhalo, z (for n), Sigma_T, v_c, x_D (optional)
# dark is a dark_params struct
@enum constraint_type massloss strucform
function checkConstraint(Lambda,ct::constraint_type,properties,adm::ADM;n_test=nothing)
# Julia doesn't have a built-in switch statement and adding in the Match.jl package is
# way overkill. Short-circuiting is ok, but switch is way better
validate_ADM(adm)
ct==massloss && return checkMassLossConstraint(Lambda,properties,adm,;n_test)
ct==strucform && return checkStrucFormConstraint(Lambda,properties,adm;n_test)
throw(ArgumentError("$ct is not a valid constraint-type"))
end
function checkAllConstraints(Lambda,adm::ADM;n_test=nothing)
mlc = [getLSSProperties,getDwGalProperties,getDBCProperties,getMWProperties,getDCOProperties]
names = ["LSS","DwG","DBC","MWG","DCO"]
types = [massloss,massloss,massloss,strucform,strucform]
checks = Dict()
for i in eachindex(mlc)
checks[names[i]] = checkConstraint(Lambda,types[i],mlc[i],adm;n_test)
end
return checks
end
function plotConstraint(properties,adm::ADM;fig=nothing,name=nothing,ctype::constraint_type=massloss)
calcConstraint = ctype==massloss ? calcMassLossConstraint : calcStrucFormConstraint
Lambda_cons, direction, n, T = calcConstraint(properties,adm)
if isnothing(name)
name="Constraint"
end
if size(Lambda_cons,1)==1
marker="*"
linestyle="none"
else
marker="none"
linestyle=nothing
end
h = loglog(T, Lambda_cons;marker,linestyle,label=name)
midT = mean(log10.([minimum(T),maximum(T)]))
if size(T)[2]>1
x = log10.(vec(T[:,1]))
else
x = log10.(vec(T))
end
y = vec(minimum(Lambda_cons,dims=2))
if length(x)==1
# we have a 1xn vector, just use everything
x = log10.(vec(T))
y = vec(Lambda_cons)
#println("We have a 1x$(size(T)[2]) vector. Switching to using everything:\nx=$x\ny=$y")
end
if length(x)>1
inds = sortperm(x)
x = x[inds]
y = y[inds]
Interpolations.deduplicate_knots!(x,move_knots=true)
Lambda_fit = linear_interpolation(x,y)
y1 = Lambda_fit(midT)
else
y1 = y
end
if direction==above # allowed arrow points down
# Needs to be done in logspace - makes this trickier
y2 = y1/10
else
y2 = y1*10
end
col = h[1].get_color()
PyPlot.annotate("",xytext=(10^midT,y1),xy=(10^midT,y2),arrowprops=Dict("arrowstyle"=>"->","facecolor"=>col,"edgecolor"=>col))
#println("x=$midT\ny=$(Lambda_fit[midT])\nx+dx=$midT\ny+dy=$(y)")
if size(h)[1]>1
for h1 in h
h1.update_from(h[1])
end
end
if isnothing(fig)
ylim(1e-35, 1e-18)
xlim(1e0, 1e10)
grid()
return gcf,h
end
return fig,h
end