-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgrid.py
406 lines (355 loc) · 13.3 KB
/
grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
from math import ceil, sqrt, pow as m_pow
class Node:
__slots__ = ["weight", "i", "j", "source", "interp"]
def __init__(self, i, j, src=None):
self.weight = 0
self.i = i
self.j = j
self.source = src
self.interp = None
class Point:
__slots__ = ["x", "y"]
def __init__(self, x, y):
self.x = x
self.y = y
def to_xy(self):
return (self.x, self.y)
def distance(self, other):
a = self.x - other.x
b = self.y - other.y
return sqrt(a * a + b * b)
class Rectangle2D:
__slots__ = ["height", "width", "x", "y"]
def __init__(self, x, y, width, height):
self.x = x
self.y = y
self.height = height
self.width = width
def add(self, pt):
if pt.x < self.x:
self.width += self.x - pt.x
self.x = pt.x
elif pt.x > self.x + self.width:
self.width = pt.x - self.x
if pt.y < self.y:
self.height += self.y - pt.y
self.y = pt.y
elif pt.y > self.y + self.height:
self.height = pt.y - self.y
@staticmethod
def from_points(points):
if len(points) == 0:
return Rectangle2D(0, 0, 0, 0)
return Rectangle2D.from_bbox(getBoundingRect(points))
def as_bbox(self):
return (self.x, self.y, self.x + self.width, self.y + self.height)
@staticmethod
def from_bbox(bbox):
return Rectangle2D(bbox[3] - bbox[1], bbox[2] - bbox[0], bbox[0], bbox[1])
def getBoundingRect(points):
minx = float("inf")
miny = float("inf")
maxx = -float("inf")
maxy = -float("inf")
for p in points:
if p.x > maxx:
maxx = p.x
if p.x < minx:
minx = p.x
if p.y > maxy:
maxy = p.y
if p.y < miny:
miny = p.y
return (minx, miny, maxx, maxy)
class Grid:
def __init__(self, points, precision, rect=None):
self.interp_points = None
self.points = points
if not rect:
rect = Rectangle2D.from_points(points).as_bbox()
rect = list(rect)
self.rect_width = rect[2] - rect[0]
self.rect_height = rect[3] - rect[1]
self.resolution = (
1 / precision * sqrt(self.rect_width * self.rect_height / len(points))
)
self.width = ceil(self.rect_width / self.resolution) + 1
self.height = ceil(self.rect_height / self.resolution) + 1
self.dx = self.width * self.resolution - self.rect_width
self.dy = self.height * self.resolution - self.rect_height
rect[0] = rect[0] - self.dx / 2
rect[1] = rect[1] - self.dy / 2
rect[2] = rect[2] + self.dx / 2
rect[3] = rect[3] + self.dy / 2
self.rect_width = rect[2] - rect[0]
self.rect_height = rect[3] - rect[1]
self.width += 1
self.height += 1
self.min_x = rect[0]
self.max_y = rect[3]
self.nodes = []
resolution = self.resolution
for i in range(self.height):
for j in range(self.width):
self.nodes.append(
Node(
i,
j,
Point(self.min_x + j * resolution, self.max_y - i * resolution),
)
)
for p in points:
adj_nodes = self.get_adj_nodes(p)
for n in adj_nodes:
n.weight += 1
def get_node(self, i, j):
if i < 0 or j < 0 or i >= self.height or j >= self.width:
return None
return self.nodes[i * self.width + j]
def get_i(self, p):
return int((self.max_y - p.y) / self.resolution)
def get_j(self, p):
return int((p.x - self.min_x) / self.resolution)
def get_adj_nodes(self, point):
i = self.get_i(point)
j = self.get_j(point)
adj_nodes = [
self.get_node(i, j),
self.get_node(i, j + 1),
self.get_node(i + 1, j),
self.get_node(i + 1, j + 1),
]
return adj_nodes
def get_interp_point(self, src_point):
adj_nodes = self.get_adj_nodes(src_point)
resolution = self.resolution
ux1 = src_point.x - adj_nodes[0].source.x
vy1 = src_point.y - adj_nodes[2].source.y
hx1 = (
ux1 / resolution * (adj_nodes[1].interp.x - adj_nodes[0].interp.x)
+ adj_nodes[0].interp.x
)
hx2 = (
ux1 / resolution * (adj_nodes[3].interp.x - adj_nodes[2].interp.x)
+ adj_nodes[2].interp.x
)
HX = vy1 / resolution * (hx1 - hx2) + hx2
hy1 = (
ux1 / resolution * (adj_nodes[1].interp.y - adj_nodes[0].interp.y)
+ adj_nodes[0].interp.y
)
hy2 = (
ux1 / resolution * (adj_nodes[3].interp.y - adj_nodes[2].interp.y)
+ adj_nodes[2].interp.y
)
HY = vy1 / resolution * (hy1 - hy2) + hy2
return Point(HX, HY)
def _interp_point(self, x, y):
p = self.get_interp_point(Point(x, y))
return (p.x, p.y)
def get_diff(self, i, j, diff):
if not diff:
diff = [0] * 4
n = self.get_node(i, j)
ny1 = self.get_node(i - 1, j)
ny2 = self.get_node(i + 1, j)
nx1 = self.get_node(i, j - 1)
nx2 = self.get_node(i, j + 1)
resolution = self.resolution
if not nx1:
diff[0] = (nx2.interp.x - n.interp.x) / resolution
diff[1] = (nx2.interp.y - n.interp.y) / resolution
elif not nx2:
diff[0] = (n.interp.x - nx1.interp.x) / resolution
diff[1] = (n.interp.y - nx1.interp.y) / resolution
else:
diff[0] = (nx2.interp.x - nx1.interp.x) / (2 * resolution)
diff[1] = (nx2.interp.y - nx1.interp.y) / (2 * resolution)
if not ny1:
diff[2] = (n.interp.x - ny2.interp.x) / resolution
diff[3] = (n.interp.y - ny2.interp.y) / resolution
elif not ny2:
diff[2] = (ny1.interp.x - n.interp.x) / resolution
diff[3] = (ny1.interp.y - n.interp.y) / resolution
else:
diff[2] = (ny1.interp.x - ny2.interp.x) / (2 * resolution)
diff[3] = (ny1.interp.y - ny2.interp.y) / (2 * resolution)
return diff
def interpolate(self, img_points, nb_iter):
for n in self.nodes:
n.interp = Point(n.source.x, n.source.y)
# We could probably do the following:
# rect = Rectangle2D.from_points(self.points)
# rect_adj = Rectangle2D.from_points(img_points)
# but the original implementation
# starts with a point at (0, 0) and we don't want to change that
rect = Rectangle2D(0, 0, -1, -1)
for p in self.points:
rect.add(p)
rect_adj = Rectangle2D(0, 0, -1, -1)
for p in img_points:
rect_adj.add(p)
self.scaleX = rect_adj.width / rect.width
self.scaleY = rect_adj.height / rect.height
resolution = self.resolution
width, height = self.width, self.height
rect_dim = self.rect_width * self.rect_height
get_node = self.get_node
get_smoothed, get_adj_nodes = self.get_smoothed, self.get_adj_nodes
for k in range(nb_iter):
for src_pt, adj_pt in zip(self.points, img_points):
adj_nodes = get_adj_nodes(src_pt)
smoothed_nodes = [get_smoothed(a.i, a.j) for a in adj_nodes]
ux1 = src_pt.x - adj_nodes[0].source.x
ux2 = resolution - ux1
vy1 = src_pt.y - adj_nodes[2].source.y
vy2 = resolution - vy1
u = 1 / (ux1 * ux1 + ux2 * ux2)
v = 1 / (vy1 * vy1 + vy2 * vy2)
w = [vy1 * ux2, vy1 * ux1, vy2 * ux2, vy2 * ux1]
qx = [0] * 4
qy = [0] * 4
deltaZx = [0] * 4
deltaZy = [0] * 4
sQx = sQy = sW = 0
for i in range(4):
sW += m_pow(w[i], 2)
deltaZx[i] = adj_nodes[i].interp.x - smoothed_nodes[i].x
deltaZy[i] = adj_nodes[i].interp.y - smoothed_nodes[i].y
qx[i] = w[i] * deltaZx[i]
qy[i] = w[i] * deltaZy[i]
sQx += qx[i]
sQy += qy[i]
hx1 = (
ux1 / resolution * (adj_nodes[1].interp.x - adj_nodes[0].interp.x)
+ adj_nodes[0].interp.x
)
hx2 = (
ux1 / resolution * (adj_nodes[3].interp.x - adj_nodes[2].interp.x)
+ adj_nodes[2].interp.x
)
HX = vy1 / resolution * (hx1 - hx2) + hx2
hy1 = (
ux1 / resolution * (adj_nodes[1].interp.y - adj_nodes[0].interp.y)
+ adj_nodes[0].interp.y
)
hy2 = (
ux1 / resolution * (adj_nodes[3].interp.y - adj_nodes[2].interp.y)
+ adj_nodes[2].interp.y
)
HY = vy1 / resolution * (hy1 - hy2) + hy2
deltaX = adj_pt.x - HX
deltaY = adj_pt.y - HY
dx = deltaX * resolution * resolution
dy = deltaY * resolution * resolution
for i in range(4):
adjX = (
u
* v
* ((dx - qx[i] + sQx) * w[i] + deltaZx[i] * (w[i] * w[i] - sW))
/ adj_nodes[i].weight
)
adj_nodes[i].interp.x += adjX
adjY = (
u
* v
* ((dy - qy[i] + sQy) * w[i] + deltaZy[i] * (w[i] * w[i] - sW))
/ adj_nodes[i].weight
)
adj_nodes[i].interp.y += adjY
p_tmp = Point(0, 0)
for l in range(width * height):
delta = 0
for i in range(height):
for j in range(width):
n = get_node(i, j)
if n.weight == 0:
p_tmp.x = n.interp.x
p_tmp.y = n.interp.y
_p = get_smoothed(i, j)
n.interp.x = _p.x
n.interp.y = _p.y
delta = max([delta, p_tmp.distance(n.interp) / rect_dim])
if l > 5 and sqrt(delta) < 0.0001:
break
self.interp_points = [
self.get_interp_point(self.points[i]) for i in range(len(img_points))
]
return self.interp_points
def get_smoothed(self, i, j):
get_node = self.get_node
if 1 < i < self.height - 2 and 1 < j < self.width - 2:
a = get_node(i - 1, j).interp
b = get_node(i + 1, j).interp
c = get_node(i, j - 1).interp
d = get_node(i, j + 1).interp
e = get_node(i - 1, j - 1).interp
f = get_node(i + 1, j - 1).interp
g = get_node(i + 1, j + 1).interp
h = get_node(i - 1, j + 1).interp
_i = get_node(i - 2, j).interp
_j = get_node(i + 2, j).interp
k = get_node(i, j - 2).interp
_l = get_node(i, j + 2).interp
return Point(
(
8 * (a.x + b.x + c.x + d.x)
- 2 * (e.x + f.x + g.x + h.x)
- (_i.x + _j.x + k.x + _l.x)
)
/ 20,
(
8 * (a.y + b.y + c.y + d.y)
- 2 * (e.y + f.y + g.y + h.y)
- (_i.y + _j.y + k.y + _l.y)
)
/ 20,
)
nb = sx = sy = 0
if i > 0:
n = get_node(i - 1, j).interp
sx += n.x
sy += n.y
nb += 1
else:
sy += self.scaleY * self.resolution
if j > 0:
n = get_node(i, j - 1).interp
sx += n.x
sy += n.y
nb += 1
else:
sx -= self.scaleX * self.resolution
if i < self.height - 1:
n = get_node(i + 1, j).interp
sx += n.x
sy += n.y
nb += 1
else:
sy -= self.scaleY * self.resolution
if j < self.width - 1:
n = get_node(i, j + 1).interp
sx += n.x
sy += n.y
nb += 1
else:
sx += self.scaleX * self.resolution
return Point(sx / nb, sy / nb)
def _get_grid_coords(self, _type="source"):
if _type not in ("source", "interp"):
raise ValueError("Invalid grid type requested")
polys = []
for i in range(self.height - 1):
for j in range(self.width - 1):
polys.append(
[
[
getattr(self.get_node(i, j), _type).to_xy(),
getattr(self.get_node(i + 1, j), _type).to_xy(),
getattr(self.get_node(i + 1, j + 1), _type).to_xy(),
getattr(self.get_node(i, j + 1), _type).to_xy(),
getattr(self.get_node(i, j), _type).to_xy(),
]
]
)
return polys