-
Notifications
You must be signed in to change notification settings - Fork 0
/
speaker_id.py
355 lines (271 loc) · 10.9 KB
/
speaker_id.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# speaker_id.py
# Mirco Ravanelli
# Mila - University of Montreal
# July 2018
# Description:
# This code performs a speaker_id experiments with SincNet.
# How to run it:
# python speaker_id.py --cfg=cfg/SincNet_TIMIT.cfg
import os
#import scipy.io.wavfile
import soundfile as sf
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.loss import NLLLoss
import torch.optim as optim
from torch.autograd import Variable
from metrics import CurricularFace
from tqdm import tqdm
import sys
import numpy as np
from dnn_models import MLP, flip
from dnn_models import SincNet as CNN
from data_io import ReadList, read_conf, str_to_bool
def create_batches_rnd(batch_size, data_folder, wav_lst, N_snt, wlen, lab_dict, fact_amp):
# Initialization of the minibatch (batch_size,[0=>x_t,1=>x_t+N,1=>random_samp])
sig_batch = np.zeros([batch_size, wlen])
lab_batch = np.zeros(batch_size)
snt_id_arr = np.random.randint(N_snt, size=batch_size)
rand_amp_arr = np.random.uniform(1.0-fact_amp, 1+fact_amp, batch_size)
for i in range(batch_size):
# select a random sentence from the list
# [fs,signal]=scipy.io.wavfile.read(data_folder+wav_lst[snt_id_arr[i]])
# signal=signal.astype(float)/32768
[signal, fs] = sf.read(data_folder+wav_lst[snt_id_arr[i]])
# accesing to a random chunk
snt_len = signal.shape[0]
# randint(0, snt_len-2*wlen-1)
snt_beg = np.random.randint(snt_len-wlen-1)
snt_end = snt_beg+wlen
channels = len(signal.shape)
if channels == 2:
print('WARNING: stereo to mono: ' +
data_folder+wav_lst[snt_id_arr[i]])
signal = signal[:, 0]
sig_batch[i, :] = signal[snt_beg:snt_end]*rand_amp_arr[i]
lab_batch[i] = lab_dict[wav_lst[snt_id_arr[i]]]
inp = Variable(torch.from_numpy(sig_batch).float().cuda().contiguous())
lab = Variable(torch.from_numpy(lab_batch).float().cuda().contiguous())
return inp, lab
# Reading cfg file
options = read_conf()
# [data]
tr_lst = options.tr_lst
te_lst = options.te_lst
pt_file = options.pt_file
class_dict_file = options.lab_dict
data_folder = options.data_folder+'/'
output_folder = options.output_folder
# [windowing]
fs = int(options.fs)
cw_len = int(options.cw_len)
cw_shift = int(options.cw_shift)
# [cnn]
cnn_N_filt = list(map(int, options.cnn_N_filt.split(',')))
cnn_len_filt = list(map(int, options.cnn_len_filt.split(',')))
cnn_max_pool_len = list(map(int, options.cnn_max_pool_len.split(',')))
cnn_use_laynorm_inp = str_to_bool(options.cnn_use_laynorm_inp)
cnn_use_batchnorm_inp = str_to_bool(options.cnn_use_batchnorm_inp)
cnn_use_laynorm = list(map(str_to_bool, options.cnn_use_laynorm.split(',')))
cnn_use_batchnorm = list(
map(str_to_bool, options.cnn_use_batchnorm.split(',')))
cnn_act = list(map(str, options.cnn_act.split(',')))
cnn_drop = list(map(float, options.cnn_drop.split(',')))
# [dnn]
fc_lay = list(map(int, options.fc_lay.split(',')))
fc_drop = list(map(float, options.fc_drop.split(',')))
fc_use_laynorm_inp = str_to_bool(options.fc_use_laynorm_inp)
fc_use_batchnorm_inp = str_to_bool(options.fc_use_batchnorm_inp)
fc_use_batchnorm = list(map(str_to_bool, options.fc_use_batchnorm.split(',')))
fc_use_laynorm = list(map(str_to_bool, options.fc_use_laynorm.split(',')))
fc_act = list(map(str, options.fc_act.split(',')))
# [class]
class_lay = list(map(int, options.class_lay.split(',')))
class_drop = list(map(float, options.class_drop.split(',')))
class_use_laynorm_inp = str_to_bool(options.class_use_laynorm_inp)
class_use_batchnorm_inp = str_to_bool(options.class_use_batchnorm_inp)
class_use_batchnorm = list(
map(str_to_bool, options.class_use_batchnorm.split(',')))
class_use_laynorm = list(
map(str_to_bool, options.class_use_laynorm.split(',')))
class_act = list(map(str, options.class_act.split(',')))
# [optimization]
lr = float(options.lr)
batch_size = int(options.batch_size)
N_epochs = int(options.N_epochs)
N_batches = int(options.N_batches)
N_eval_epoch = int(options.N_eval_epoch)
seed = int(options.seed)
# training list
wav_lst_tr = ReadList(tr_lst)
snt_tr = len(wav_lst_tr)
# test list
wav_lst_te = ReadList(te_lst)
snt_te = len(wav_lst_te)
# Folder creation
try:
os.stat(output_folder)
except:
os.mkdir(output_folder)
# setting seed
torch.manual_seed(seed)
np.random.seed(seed)
# loss function
cost = CurricularFace().cuda()
criteration = nn.CrossEntropyLoss()
softmax = nn.LogSoftmax(dim=1)
# Converting context and shift in samples
wlen = int(fs*cw_len/1000.00)
wshift = int(fs*cw_shift/1000.00)
# Batch_dev
Batch_dev = 128
# Feature extractor CNN
CNN_arch = {'input_dim': wlen,
'fs': fs,
'cnn_N_filt': cnn_N_filt,
'cnn_len_filt': cnn_len_filt,
'cnn_max_pool_len': cnn_max_pool_len,
'cnn_use_laynorm_inp': cnn_use_laynorm_inp,
'cnn_use_batchnorm_inp': cnn_use_batchnorm_inp,
'cnn_use_laynorm': cnn_use_laynorm,
'cnn_use_batchnorm': cnn_use_batchnorm,
'cnn_act': cnn_act,
'cnn_drop': cnn_drop,
}
CNN_net = CNN(CNN_arch)
CNN_net.cuda()
# Loading label dictionary
lab_dict = np.load(class_dict_file).item()
DNN1_arch = {'input_dim': CNN_net.out_dim,
'fc_lay': fc_lay,
'fc_drop': fc_drop,
'fc_use_batchnorm': fc_use_batchnorm,
'fc_use_laynorm': fc_use_laynorm,
'fc_use_laynorm_inp': fc_use_laynorm_inp,
'fc_use_batchnorm_inp': fc_use_batchnorm_inp,
'fc_act': fc_act,
}
DNN1_net = MLP(DNN1_arch)
DNN1_net.cuda()
DNN2_arch = {'input_dim': fc_lay[-1],
'fc_lay': class_lay,
'fc_drop': class_drop,
'fc_use_batchnorm': class_use_batchnorm,
'fc_use_laynorm': class_use_laynorm,
'fc_use_laynorm_inp': class_use_laynorm_inp,
'fc_use_batchnorm_inp': class_use_batchnorm_inp,
'fc_act': class_act,
}
DNN2_net = MLP(DNN2_arch)
DNN2_net.cuda()
if pt_file != 'none':
checkpoint_load = torch.load(pt_file)
CNN_net.load_state_dict(checkpoint_load['CNN_model_par'])
DNN1_net.load_state_dict(checkpoint_load['DNN1_model_par'])
cost.load_state_dict(checkpoint_load['cost_parameter'])
optimizer_CNN = optim.RMSprop(
CNN_net.parameters(), lr=lr, alpha=0.95, eps=1e-8)
optimizer_DNN1 = optim.RMSprop(
DNN1_net.parameters(), lr=lr, alpha=0.95, eps=1e-8)
optimizer_DNN2 = optim.RMSprop(
DNN2_net.parameters(), lr=lr, alpha=0.95, eps=1e-8)
optimizer_Curricular = optim.SGD(
list(cost.parameters()), lr=0.01, momentum=0.9)
for epoch in range(N_epochs):
test_flag = 0
CNN_net.train()
DNN1_net.train()
DNN2_net.train()
loss_sum = 0
err_sum = 0
for i in tqdm(range(N_batches)):
[inp, lab] = create_batches_rnd(
batch_size, data_folder, wav_lst_tr, snt_tr, wlen, lab_dict, 0.2)
pout = DNN1_net(CNN_net(inp))
out, out1 = cost(pout, lab.long())
loss = criteration(out, lab.long())
pred = torch.max(out1, dim=1)[1]
err = torch.mean((pred != lab.long()).float())
optimizer_CNN.zero_grad()
optimizer_DNN1.zero_grad()
optimizer_DNN2.zero_grad()
optimizer_Curricular.zero_grad()
loss.backward()
optimizer_CNN.step()
optimizer_DNN1.step()
optimizer_DNN2.step()
optimizer_Curricular.step()
loss_sum = loss_sum+loss.detach()
err_sum = err_sum+err.detach()
loss_tot = loss_sum/N_batches
err_tot = err_sum/N_batches
# Full Validation new
if epoch % N_eval_epoch == 0:
CNN_net.eval()
DNN1_net.eval()
DNN2_net.eval()
cost.eval()
test_flag = 1
loss_sum = 0
err_sum = 0
err_sum_snt = 0
with torch.no_grad():
for i in tqdm(range(snt_te)):
# [fs,signal]=scipy.io.wavfile.read(data_folder+wav_lst_te[i])
# signal=signal.astype(float)/32768
[signal, fs] = sf.read(data_folder+wav_lst_te[i])
signal = torch.from_numpy(signal).float().cuda().contiguous()
lab_batch = lab_dict[wav_lst_te[i]]
# split signals into chunks
beg_samp = 0
end_samp = wlen
N_fr = int((signal.shape[0]-wlen)/(wshift))
sig_arr = torch.zeros(
[Batch_dev, wlen]).float().cuda().contiguous()
lab = Variable(
(torch.zeros(N_fr+1)+lab_batch).cuda().contiguous().long())
pout = Variable(torch.zeros(
N_fr+1, class_lay[-1]).float().cuda().contiguous())
count_fr = 0
count_fr_tot = 0
while end_samp < signal.shape[0]:
sig_arr[count_fr, :] = signal[beg_samp:end_samp]
beg_samp = beg_samp+wshift
end_samp = beg_samp+wlen
count_fr = count_fr+1
count_fr_tot = count_fr_tot+1
if count_fr == Batch_dev:
inp = Variable(sig_arr)
pout[count_fr_tot-Batch_dev:count_fr_tot,
:] = cost(DNN1_net(CNN_net(inp)))
count_fr = 0
sig_arr = torch.zeros(
[Batch_dev, wlen]).float().cuda().contiguous()
if count_fr > 0:
inp = Variable(sig_arr[0:count_fr])
pout[count_fr_tot-count_fr:count_fr_tot,
:] = cost(DNN1_net(CNN_net(inp)))
# add a sofmax layer
pred = torch.max(softmax(pout), dim=1)[1]
loss = criteration(pout, lab.long())
err = torch.mean((pred != lab.long()).float())
[val, best_class] = torch.max(torch.sum(pout, dim=0), 0)
err_sum_snt = err_sum_snt+(best_class != lab[0]).float()
loss_sum = loss_sum+loss.detach()
err_sum = err_sum+err.detach()
err_tot_dev_snt = err_sum_snt/snt_te
loss_tot_dev = loss_sum/snt_te
err_tot_dev = err_sum/snt_te
print("epoch %i, loss_tr=%f err_tr=%f loss_te=%f err_te=%f err_te_snt=%f" % (
epoch, loss_tot, err_tot, loss_tot_dev, err_tot_dev, err_tot_dev_snt))
with open(output_folder+"/res_curricular.res", "a") as res_file:
res_file.write("epoch %i, loss_tr=%f err_tr=%f loss_te=%f err_te=%f err_te_snt=%f\n" % (
epoch, loss_tot, err_tot, loss_tot_dev, err_tot_dev, err_tot_dev_snt))
checkpoint = {'CNN_model_par': CNN_net.state_dict(),
'DNN1_model_par': DNN1_net.state_dict(),
'cost_parameter': cost.state_dict()
}
torch.save(checkpoint, output_folder+'/libri_curricular.pkl')
else:
print("epoch %i, loss_tr=%f err_tr=%f" % (epoch, loss_tot, err_tot))