-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathreadData_fungo.py
346 lines (309 loc) · 12 KB
/
readData_fungo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import os
import pickle
import random
from collections import defaultdict
import numpy as np
from IPython import embed
def replace_nan_by_mean(X):
# Obtain mean of columns as you need, nanmean is just convenient.
col_mean = np.nanmean(X, axis=0)
# Find indicies that you need to replace
inds = np.where(np.isnan(X))
# Place column means in the indices. Align the arrays using take
X[inds] = np.take(col_mean, inds[1])
return X
def read_fungo_(f_in):
"""
X: features
Y: labels
C: for *_FUN: in format ancestor1/ancestor2/.../label
for *_GO: in format parent/child [CAUTION: since it is a DAG, its size is larger than C_slash]
C_slash: unique labels for *_GO [somehow have 3 more labels than HMCN's paper.]
"""
ct = 0
A = 0
C = 0
C_set = set()
flag = False
X = []
Y = []
with open(f_in) as f:
for line in f:
if line.startswith('@ATTRIBUTE'):
if '/' in line:
# print(line.split(','))
C = line.strip().split(',')
C[0] = C[0].split()[-1]
# print([i.split('/')[-1] for i in C][-10:])
C_slash = set([i.split('/')[-1] for i in C])
else:
A += 1
if flag:
ct += 1
data = line.strip().split(',')
classes = data[-1].split('@')
# convert ? to nan
X.append([float(i) if i != '?' else np.nan for i in data[:-1]])
Y.append(classes)
C_set.update(classes)
if line.startswith('@DATA'):
flag = True
X = np.array(X)
X = replace_nan_by_mean(X)
# print(f'[{f_in}] #features={A}, #Classes={len(C)}, #C_slash={len(C_slash)}, #C_appear={len(C_set)}, #samples={ct}')
return X, Y, C, C_slash
def read_fungo_all(name):
valid = read_fungo_(
f"./protein_datasets/{name}.valid.arff")
test = read_fungo_(
f"./protein_datasets/{name}.test.arff")
train = read_fungo_(
f"./protein_datasets/{name}.train.arff")
return train, valid, test
def construct_hier_dag(name):
hierarchy = defaultdict(set)
train_classes = read_fungo_(
f"./protein_datasets/{name}.train.arff")[2]
valid_classes = read_fungo_(
f"./protein_datasets/{name}.valid.arff")[2]
test_classes = read_fungo_(
f"./protein_datasets/{name}.test.arff")[2]
for t in [train_classes, valid_classes, test_classes]:
for y in t:
parent, child = y.split('/')
if parent == 'root':
parent = 'Top'
hierarchy[parent].add(child)
if not child in hierarchy:
hierarchy[child] = set()
return hierarchy
def construct_hierarchy(name):
# Construct hierarchy from train/valid/test.
hierarchy = defaultdict(set)
train_classes = read_fungo_(
f"./protein_datasets/{name}.train.arff")[2]
valid_classes = read_fungo_(
f"./protein_datasets/{name}.valid.arff")[2]
test_classes = read_fungo_(
f"./protein_datasets/{name}.test.arff")[2]
for t in [train_classes, valid_classes, test_classes]:
for y in t:
hier_list = y.split('/')
# Add a pseudo node: Top
if len(hier_list) == 1:
hierarchy['Top'].add(hier_list[0])
hierarchy[hier_list[0]] = set()
continue
for l in range(1, len(hier_list)):
parent = '/'.join(hier_list[:l])
child = '/'.join(hier_list[:l + 1])
if l == 1:
hierarchy['Top'].add(parent)
if not child in hierarchy[parent]:
hierarchy[parent].add(child)
if not child in hierarchy:
hierarchy[child] = set()
return hierarchy
def get_all_ancestor_nodes(hierarchy, node):
node_list = set()
def dfs(node):
if node != 'Top':
node_list.add(node)
parents = hierarchy[node]['parent']
for parent in parents:
dfs(parent)
dfs(node)
return node_list
def read_go(name):
if os.path.exists(f'./protein_datasets/{name}.pkl'):
return pickle.load(open(f'./protein_datasets/{name}.pkl', 'rb'))
p2c = defaultdict(list)
id2doc = defaultdict(lambda: defaultdict(list))
nodes = defaultdict(lambda: defaultdict(list))
random.seed(42)
train, valid, test = read_fungo_all(name)
hierarchy = construct_hier_dag(name)
for parent in hierarchy:
for child in hierarchy[parent]:
p2c[parent].append(child)
for label in p2c:
for children in p2c[label]:
nodes[label]['children'].append(children)
nodes[children]['parent'].append(label)
train_data = np.concatenate([train[0], valid[0]])
train[1].extend(valid[1])
X_train = []
X_test = []
train_ids = []
test_ids = []
for idx, (feature, classes) in enumerate(zip(train_data, train[1])):
X_train.append(feature)
train_ids.append(idx)
for class_ in classes:
ancestor_nodes = get_all_ancestor_nodes(nodes, class_)
for label in ancestor_nodes:
if not label in id2doc[idx]['categories']:
id2doc[idx]['categories'].append(label)
for idx, (feature, classes) in enumerate(zip(test[0], test[1])):
X_test.append(feature)
test_ids.append(idx + train_data.shape[0])
for class_ in classes:
ancestor_nodes = get_all_ancestor_nodes(nodes, class_)
for label in ancestor_nodes:
if not label in id2doc[idx + train_data.shape[0]]['categories']:
id2doc[idx + train_data.shape[0]]['categories'].append(label)
res = X_train, X_test, train_ids, test_ids, dict(id2doc), dict(nodes)
pickle.dump(res, open(f'./protein_datasets/{name}.pkl', 'wb'))
return res
def read_fun(name):
if os.path.exists(f'./protein_datasets/{name}.pkl'):
return pickle.load(open(f'./protein_datasets/{name}.pkl', 'rb'))
p2c = defaultdict(list)
id2doc = defaultdict(lambda: defaultdict(list))
nodes = defaultdict(lambda: defaultdict(list))
random.seed(42)
train, valid, test = read_fungo_all(name)
hierarchy = construct_hierarchy(name)
for parent in hierarchy:
for child in hierarchy[parent]:
p2c[parent].append(child)
for label in p2c:
for children in p2c[label]:
nodes[label]['children'].append(children)
nodes[children]['parent'].append(label)
train_data = np.concatenate([train[0], valid[0]])
train[1].extend(valid[1])
X_train = []
X_test = []
train_ids = []
test_ids = []
for idx, (feature, classes) in enumerate(zip(train_data, train[1])):
X_train.append(feature)
train_ids.append(idx)
for class_ in classes:
hier_list = class_.split('/')
for l in range(1, len(hier_list) + 1):
label = '/'.join(hier_list[:l])
if not label in id2doc[idx]['categories']:
id2doc[idx]['categories'].append(label)
for idx, (feature, classes) in enumerate(zip(test[0], test[1])):
X_test.append(feature)
test_ids.append(idx + train_data.shape[0])
for class_ in classes:
# For each sample, we treat all nodes in the path as labels.
hier_list = class_.split('/')
for l in range(1, len(hier_list) + 1):
label = '/'.join(hier_list[:l])
if not label in id2doc[idx + train_data.shape[0]]['categories']:
id2doc[idx + train_data.shape[0]]['categories'].append(label)
res = X_train, X_test, train_ids, test_ids, dict(id2doc), dict(nodes)
pickle.dump(res, open(f'./protein_datasets/{name}.pkl', 'wb'))
return res
def read_fungo(name):
if 'FUN' in name:
return read_fun(name)
return read_go(name)
def process_for_cssag(name, train_data, train_labels, test_data, test_labels):
if 'FUN' in name:
hierarchy = construct_hierarchy(name)
else:
hierarchy = construct_hier_dag(name)
nodes = defaultdict(lambda: defaultdict(list))
p2c = defaultdict(list)
for parent in hierarchy:
for child in hierarchy[parent]:
p2c[parent].append(child)
for label in p2c:
for children in p2c[label]:
nodes[label]['children'].append(children)
nodes[children]['parent'].append(label)
label2id = {}
for k in hierarchy:
if k not in label2id:
label2id[k] = len(label2id)
with open('./cssag/' + name + '.hier', 'w') as OUT:
for k in hierarchy:
OUT.write(str(label2id[k]))
for c in hierarchy[k]:
OUT.write(' ' + str(label2id[c]))
OUT.write('\n')
with open('./cssag/' + name + '.train.x', 'w') as OUT:
for l in range(train_data.shape[0]):
x = train_data[l]
OUT.write('0')
for idx, i in enumerate(x):
OUT.write(' ' + str(idx + 1) + ':' + str(i))
OUT.write('\n')
with open('./cssag/' + name + '.test.x', 'w') as OUT:
for l in range(test_data.shape[0]):
x = test_data[l]
OUT.write('0')
for idx, i in enumerate(x):
OUT.write(' ' + str(idx + 1) + ':' + str(i))
OUT.write('\n')
if 'FUN' in name:
with open('./cssag/' + name + '.train.y', 'w') as OUT:
for classes in train_labels:
# OUT.write(str(label2id['Top']))
labels = set()
for class_ in classes:
hier_list = class_.split('/')
for l in range(1, len(hier_list) + 1):
label = '/'.join(hier_list[:l])
labels.add(label)
for i, label in enumerate(labels):
if i > 0:
OUT.write(',')
OUT.write(str(label2id[label]))
OUT.write('\n')
with open('./cssag/' + name + '.test.y', 'w') as OUT:
for classes in test_labels:
# OUT.write(str(label2id['Top']))
labels = set()
for class_ in classes:
hier_list = class_.split('/')
for l in range(1, len(hier_list) + 1):
label = '/'.join(hier_list[:l])
labels.add(label)
for i, label in enumerate(labels):
if i > 0:
OUT.write(',')
OUT.write(str(label2id[label]))
OUT.write('\n')
elif 'GO' in name:
with open('./cssag/' + name + '.train.y', 'w') as OUT:
for classes in train_labels:
labels = set()
for class_ in classes:
ancestor_nodes = get_all_ancestor_nodes(nodes, class_)
for label in ancestor_nodes:
labels.add(label)
for i, label in enumerate(labels):
if i > 0:
OUT.write(',')
OUT.write(str(label2id[label]))
OUT.write('\n')
with open('./cssag/' + name + '.test.y', 'w') as OUT:
for classes in test_labels:
labels = set()
for class_ in classes:
ancestor_nodes = get_all_ancestor_nodes(nodes, class_)
for label in ancestor_nodes:
labels.add(label)
for i, label in enumerate(labels):
if i > 0:
OUT.write(',')
OUT.write(str(label2id[label]))
OUT.write('\n')
if __name__ == '__main__':
# res = read_go()
# embed()
# exit()
name = 'eisen_FUN'
train, valid, test = read_fungo_all(name)
train_data = np.concatenate([train[0], valid[0]])
train[1].extend(valid[1])
train_labels = train[1]
process_for_cssag(name, train_data, train_labels, test[0], test[1])
embed()
exit()