-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_unix.yaml
127 lines (126 loc) · 4.11 KB
/
config_unix.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
# application main params
general:
# where all paths and following files are located
basedirectory: .
locale: en_US.UTF-8
# following directories or files a under "basedirectory"
index: index
dbenv: db
# log options, file is "pytextminer-log.txt"
logsize: 1024000
loglevel: debug
user: sessions
shared: shared
whitelist_directory: whitelists
source_file_directory: source_files
userstopwords: user_stopwords.csv
userwhitelist: user_whitelist.csv
# stopwords are under share
stopwords: stopwords/en.txt
# extraction settings
datasets:
doc_extraction:
# the following values can be document object fields:
# - defined by one of the field's value
# - constants required fields : 'content'/'label'/'id'
- title
- content
#- keywords
# tina csv columns declaration
# will ignore undeclared fields
# and warn not found optional fields
tinacsv:
# doc_label represents one of the field's key
# if not found in the file, will use the field specified by "label"
doc_label: acronym
fields:
# required fields
label: doc_id
content: abstract
corpus_id: corp_id
id: doc_id
# optionnal fields
title: title
acronym: acronym
keywords: keywords
# csv reader params
encoding: utf_8
#
# CSV dialects.
#
# Possible choices:
# auto, excel, excel-tab, excel-comma, excel-semicolon
#
# auto: will try to detect when importing a csv file
# excel: Microsoft Excel will use current LOCALE to determine either "," or ";"
# excel-tab: tab-separated
# excel-comma: comma-separated
# excel-semicolon: semicolon-separated
#
# Guidelines:
#
# dialect_read: used for importing a CSV file. Maybe you want to leave this to "auto"
# except if your spreadsheet messed something, and indexing fails
#
# dialect_write: used to write to a CSV file. If "auto" don't work, you HAVE to edit this.
dialect_read: auto
dialect_write: auto
# pubmed.gov "medline" file export
medline:
# doc_label represents one of the field's key
# if not found in the file, will use the field specified by "label"
doc_label: title
fields:
label: PMID
content: AB
corpus_id: DP
id: PMID
# optional fields
title: TI
# period_size = number first characters of pub date field "corpusField"
period_size: 4
encoding: ascii
# archive of pubmed.gov "medline" files, organized like this
# Medline/
# period1/period1.txt
# period2/period2.txt
#medlinearchive:
# TODO
# extraction size
ngramMin: 1
ngramMax: 4
# tagger learning on 2 x training_tagger_size sentences of tagged nltk corpus
# to train on the whole corpora, mark ~ instead of a number of phrases
training_tagger_size: ~
# under "basedirectory" directory, delete this file to regenerate a new one on next starting
tagger: shared/tagger.pickle
# change this Reg Expression to change NGram extraction filtering
postag_valid: '^((VBD,|VBG,|VBN,|CD.?,|JJ.?,|\?,){0,2}?(N.?.?,|\?,)+?(CD.,)??)+?((PREP.?|DET.?,|IN.?,|CC.?,|\?,)((VBD,|VBG,|VBN,|CD.?,|JJ.?,|\?,){0,2}?(N.?.?,|\?,)+?)+?)*?$'
datamining:
template: shared/gexf/gexf.default.template
# default values if no params are passed to gexf exporter
DocumentGraph:
edgethreshold:
- 0.000
- inf
nodethreshold:
- 0.00
- inf
#proximity: sharedNGrams
proximity: logJaccard
maxdegree: 100
NGramGraph:
edgethreshold:
- 0.0000
- inf
nodethreshold:
- 0.00
- inf
alpha: 0.10
#hapax: 1
proximity: Cooccurrences
#proximity: EquivalenceIndex
#proximity: PseudoInclusion
indexer:
minCooc: 10