-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathstrategy_evaluation.py
executable file
·57 lines (48 loc) · 1.75 KB
/
strategy_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
import pickle
from os import path
import tensorflow as tf
import yaml
from sklearn.metrics import mean_squared_error
def load_tf_model(tf_version='04_11_23_15'):
tf_model_path = path.join('logs', 'tf_lstm_%s' % tf_version, 'model.meta')
tf_weight_path = path.join('logs', 'tf_lstm_%s' % tf_version)
sess = tf.Session()
saver = tf.train.import_meta_graph(tf_model_path)
graph = tf.get_default_graph()
saver.restore(sess, tf.train.latest_checkpoint(tf_weight_path))
return sess, graph
def _feed_past_data(market, d, *arguments):
"""
:param market: the price series
:param d: current day
:param arguments: number of days to look back
:return: news and price data
"""
if not arguments:
return market['price'].loc[d]
else:
loc = market.index.get_loc(d)
return market.iloc[loc - arguments[0]:loc]
with open('config.yaml') as stream:
try:
config = yaml.load(stream)
except yaml.YAMLError as exc:
print(exc)
parser = argparse.ArgumentParser(description='buying strategy parsing')
parser.add_argument('--embed', type=str, required=True, choices=config['embed'])
args = parser.parse_args()
embed = args.embed
sess, graph = load_tf_model('01_01_02_13')
print('Loading test set')
with open(r"x_test_%s.pickle" % embed, "rb") as output_file:
x_test = pickle.load(output_file)
with open(r"y_test_%s.pickle" % embed, "rb") as output_file:
y_test = pickle.load(output_file)
print('Loading test completed')
last_n_days = x_test
actual_result = y_test
inputs = graph.get_tensor_by_name('input:0')
output = graph.get_tensor_by_name('output:0')
prediction_result = sess.run(output, feed_dict={inputs: last_n_days})
print(mean_squared_error(prediction_result, actual_result))