-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAleatoric_VI.py
104 lines (84 loc) · 2.84 KB
/
Aleatoric_VI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import numpy as np
import torch
from torch import nn
from matplotlib import pyplot as plt
w0 = 0.125
b0 = 5.
x_range = [-20, 60]
def load_dataset(n=150, n_tst=150):
np.random.seed(43)
def s(x):
g = (x - x_range[0]) / (x_range[1] - x_range[0])
return 3 * (0.25 + g**2.)
x = (x_range[1] - x_range[0]) * np.random.rand(n) + x_range[0]
eps = np.random.randn(n) * s(x)
y = (w0 * x * (1. + np.sin(x)) + b0) + eps
y = (y - y.mean()) / y.std()
idx = np.argsort(x)
x = x[idx]
y = y[idx]
return y[:, None], x[:, None]
y, x = load_dataset()
# Make a variable
X = torch.tensor(x, dtype=torch.float)
Y = torch.tensor(y, dtype=torch.float)
class VI(nn.Module):
def __init__(self):
super().__init__()
self.q_mu = nn.Sequential(
nn.Linear(1, 20),
nn.ReLU(),
nn.Linear(20, 10),
nn.ReLU(),
nn.Linear(10, 1)
)
self.q_log_var = nn.Sequential(
nn.Linear(1, 20),
nn.ReLU(),
nn.Linear(20, 10),
nn.ReLU(),
nn.Linear(10, 1)
)
def reparameterize(self, mu, log_var):
sigma = torch.exp(0.5 * log_var) + 1e-5
epsilon = torch.randn_like(sigma)
return mu + sigma * epsilon
def forward(self, x):
mu = self.q_mu(x)
log_var = self.q_log_var(x)
return self.reparameterize(mu, log_var), mu, log_var
# y : answer(want to predict)
# mu, sigma : variational posterior 의 parameter(variational parameter)
def ll_gaussian(y, mu, log_var): #log-likelihood of gaussian
sigma = torch.exp(0.5 * log_var)
return -0.5 * torch.log(2 * np.pi * sigma**2) - (1 / (2 * sigma**2))* (y-mu)**2
def elbo(y_pred, y, mu, log_var):
# likelihood of observing y given Variational mu and sigma > we assume y have a gaussian distribution
likelihood = ll_gaussian(y, mu, log_var)
# prior probability of y_pred
log_prior = ll_gaussian(y_pred, 0, torch.log(torch.tensor(1.)))
# variational probability of y_pred
log_p_q = ll_gaussian(y_pred, mu, log_var)
# by taking the mean we approximate the expectation
return (likelihood + log_prior - log_p_q).mean()
def det_loss(y_pred, y, mu, log_var):
return -elbo(y_pred, y, mu, log_var)
epochs = 1500
m = VI()
optim = torch.optim.Adam(m.parameters(), lr=0.005)
for epoch in range(epochs):
optim.zero_grad()
y_pred, mu, log_var = m(X)
loss = det_loss(y_pred, Y, mu, log_var)
loss.backward()
optim.step()
# draw samples from Q(theta)
with torch.no_grad():
y_pred = torch.cat([m(X)[0] for _ in range(1000)], dim=1)
# Get some quantiles
q1, mu, q2 = np.quantile(y_pred, [0.05, 0.5, 0.95], axis=1)
plt.figure(figsize=(10, 5))
plt.scatter(X, Y, s=10)
plt.plot(X, mu, 'r', alpha=0.6)
plt.fill_between(X.flatten(), q1, q2, alpha=0.2)
plt.show()