This repository has been archived by the owner on Aug 21, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathTests.qs
828 lines (661 loc) · 32.9 KB
/
Tests.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
//////////////////////////////////////////////////////////////////////
// This file contains testing harness for all tasks.
// You should not modify anything in this file.
// The tasks themselves can be found in Tasks.qs file.
//////////////////////////////////////////////////////////////////////
namespace Quantum.Kata.Measurements {
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Math;
open Microsoft.Quantum.Arrays;
open Microsoft.Quantum.Random;
open Quantum.Kata.Utils;
//////////////////////////////////////////////////////////////////
// "Framework" operation for testing single-qubit tasks for distinguishing states of one qubit
// with Bool return
operation DistinguishTwoStates_OneQubit (statePrep : ((Qubit, Int) => Unit), testImpl : (Qubit => Bool), stateName : String[]) : Unit {
let nTotal = 100;
let nStates = 2;
mutable misclassifications = [0, size = nStates];
use q = Qubit();
for i in 1 .. nTotal {
// get a random bit to define whether qubit will be in a state corresponding to true return (1) or to false one (0)
// state = 0 false return
// state = 1 true return
let state = DrawRandomInt(0, 1);
// do state prep: convert |0⟩ to outcome with false return or to outcome with true return depending on state
statePrep(q, state);
// get the solution's answer and verify if NOT a match, then differentiate what kind of mismatch
let ans = testImpl(q);
if ans != (state == 1) {
set misclassifications w/= state <- misclassifications[state] + 1;
}
// we're not checking the state of the qubit after the operation
Reset(q);
}
mutable totalMisclassifications = 0;
for i in 0 .. nStates - 1 {
if misclassifications[i] != 0 {
set totalMisclassifications += misclassifications[i];
Message($"Misclassified {stateName[i]} as {stateName[1 - i]} in {misclassifications[i]} test runs.");
}
}
// This check will tell the total number of failed classifications
Fact(totalMisclassifications == 0, $"{totalMisclassifications} test runs out of {nTotal} returned incorrect state (see output for details).");
}
// ------------------------------------------------------
operation StatePrep_IsQubitOne (q : Qubit, state : Int) : Unit {
if state != 0 {
// convert |0⟩ to |1⟩
X(q);
}
}
@Test("QuantumSimulator")
operation T101_IsQubitOne () : Unit {
DistinguishTwoStates_OneQubit(StatePrep_IsQubitOne, IsQubitOne, ["|0⟩", "|1⟩"]);
}
// ------------------------------------------------------
@Test("QuantumSimulator")
operation T102_InitializeQubit () : Unit {
use q = Qubit();
for i in 0 .. 36 {
let alpha = ((2.0 * PI()) * IntAsDouble(i)) / 36.0;
Ry(2.0 * alpha, q);
// Test Task 1
InitializeQubit(q);
// Confirm that the state is |0⟩.
AssertQubit(Zero, q);
}
}
// ------------------------------------------------------
operation StatePrep_IsQubitPlus (q : Qubit, state : Int) : Unit {
if state == 0 {
// convert |0⟩ to |-⟩
X(q);
H(q);
} else {
// convert |0⟩ to |+⟩
H(q);
}
}
@Test("QuantumSimulator")
operation T103_IsQubitPlus () : Unit {
DistinguishTwoStates_OneQubit(StatePrep_IsQubitPlus, IsQubitPlus, ["|-⟩", "|+⟩"]);
}
// ------------------------------------------------------
// |A⟩ = cos(alpha) * |0⟩ + sin(alpha) * |1⟩,
// |B⟩ = - sin(alpha) * |0⟩ + cos(alpha) * |1⟩.
operation StatePrep_IsQubitA (alpha : Double, q : Qubit, state : Int) : Unit {
if state == 0 {
// convert |0⟩ to |B⟩
X(q);
Ry(2.0 * alpha, q);
} else {
// convert |0⟩ to |A⟩
Ry(2.0 * alpha, q);
}
}
@Test("QuantumSimulator")
operation T104_IsQubitA () : Unit {
// cross-test
// alpha = 0.0 or PI() => !isQubitOne
// alpha = PI() / 2.0 => isQubitOne
DistinguishTwoStates_OneQubit(StatePrep_IsQubitOne, IsQubitA(PI() / 2.0, _),
[$"|B⟩=(-sin(π/2)|0⟩ + cos(π/2)|1⟩)", $"|A⟩=(cos(π/2)|0⟩ + sin(π/2)|1⟩)"]);
// alpha = PI() / 4.0 => isQubitPlus
DistinguishTwoStates_OneQubit(StatePrep_IsQubitPlus, IsQubitA(PI() / 4.0, _),
[$"|B⟩=(-sin(π/4)|0⟩ + cos(π/4)|1⟩)", $"|A⟩=(cos(π/4)|0⟩ + sin(π/4)|1⟩)"]);
for i in 0 .. 10 {
let alpha = (PI() * IntAsDouble(i)) / 10.0;
DistinguishTwoStates_OneQubit(StatePrep_IsQubitA(alpha, _, _), IsQubitA(alpha, _),
[$"|B⟩=(-sin({i}π/10)|0⟩ + cos({i}π/10)|1⟩)", $"|A⟩=(cos({i}π/10)|0⟩ + sin({i}π/10)|1⟩)"]);
}
}
// ------------------------------------------------------
// "Framework" operation for testing multi-qubit tasks for distinguishing states of an array of qubits
// with Int return
operation DistinguishStates_MultiQubit (nQubits : Int,
nStates : Int,
statePrep : ((Qubit[], Int) => Unit),
testImpl : (Qubit[] => Int),
measurementsPerRun : Int,
stateNames : String[]) : Unit {
let nTotal = 100;
// misclassifications will store the number of times state i has been classified as state j (dimension nStates^2)
mutable misclassifications = [0, size = nStates * nStates];
// unknownClassifications will store the number of times state i has been classified as some invalid state (index < 0 or >= nStates)
mutable unknownClassifications = [0, size = nStates];
use qs = Qubit[nQubits];
for _ in 1 .. nTotal {
// get a random integer to define the state of the qubits
let state = DrawRandomInt(0, nStates - 1);
// do state prep: convert |0...0⟩ to outcome with return equal to state
statePrep(qs, state);
if measurementsPerRun > 0 {
ResetOracleCallsCount();
}
// get the solution's answer and verify that it's a match, if not, increase the exact mismatch count
let ans = testImpl(qs);
if ((ans >= 0) and (ans < nStates)) {
// classification result is a valid state index - check if is it correct
if ans != state {
set misclassifications w/= ((state * nStates) + ans) <- (misclassifications[(state * nStates) + ans] + 1);
}
}
else {
// classification result is an invalid state index - file it separately
set unknownClassifications w/= state <- (unknownClassifications[state] + 1);
}
// if we have a max number of measurements per solution run specified, check that it is not exceeded
if measurementsPerRun > 0 {
let nm = GetOracleCallsCount(Measure);
EqualityFactB(nm <= 1, true, $"You are allowed to do at most one measurement, and you did {nm}");
}
// we're not checking the state of the qubit after the operation
ResetAll(qs);
}
mutable totalMisclassifications = 0;
for i in 0 .. nStates - 1 {
for j in 0 .. nStates - 1 {
if misclassifications[(i * nStates) + j] != 0 {
set totalMisclassifications += misclassifications[i * nStates + j];
Message($"Misclassified {stateNames[i]} as {stateNames[j]} in {misclassifications[(i * nStates) + j]} test runs.");
}
}
if unknownClassifications[i] != 0 {
set totalMisclassifications += unknownClassifications[i];
Message($"Misclassified {stateNames[i]} as Unknown State in {unknownClassifications[i]} test runs.");
}
}
// This check will tell the total number of failed classifications
Fact(totalMisclassifications == 0, $"{totalMisclassifications} test runs out of {nTotal} returned incorrect state (see output for details).");
}
// ------------------------------------------------------
operation StatePrep_ZeroZeroOrOneOne (qs : Qubit[], state : Int) : Unit {
if state == 1 {
// |11⟩
X(qs[0]);
X(qs[1]);
}
}
@Test("Microsoft.Quantum.Katas.CounterSimulator")
operation T105_ZeroZeroOrOneOne () : Unit {
DistinguishStates_MultiQubit(2, 2, StatePrep_ZeroZeroOrOneOne, ZeroZeroOrOneOne, 0, ["|00⟩", "|11⟩"]);
}
// ------------------------------------------------------
operation StatePrep_BasisStateMeasurement (qs : Qubit[], state : Int) : Unit {
if state / 2 == 1 {
// |10⟩ or |11⟩
X(qs[0]);
}
if state % 2 == 1 {
// |01⟩ or |11⟩
X(qs[1]);
}
}
@Test("Microsoft.Quantum.Katas.CounterSimulator")
operation T106_BasisStateMeasurement () : Unit {
DistinguishStates_MultiQubit(2, 4, StatePrep_BasisStateMeasurement, BasisStateMeasurement, 0, ["|00⟩", "|01⟩", "|10⟩", "|11⟩"]);
}
// ------------------------------------------------------
operation StatePrep_Bitstring (qs : Qubit[], bits : Bool[]) : Unit {
for i in 0 .. Length(qs) - 1 {
if bits[i] {
X(qs[i]);
}
}
}
operation StatePrep_TwoBitstringsMeasurement (qs : Qubit[], bits1 : Bool[], bits2 : Bool[], state : Int) : Unit {
let bits = state == 0 ? bits1 | bits2;
StatePrep_Bitstring(qs, bits);
}
// Helper function to convert a boolean array to its ket state representation
function BoolArrayAsKetState (bits : Bool[]) : String {
mutable stateName = "|";
for i in 0 .. Length(bits) - 1 {
set stateName += (bits[i] ? "1" | "0");
}
return stateName + "⟩";
}
operation CheckTwoBitstringsMeasurement (b1 : Bool[], b2 : Bool[]) : Unit {
DistinguishStates_MultiQubit(Length(b1), 2, StatePrep_TwoBitstringsMeasurement(_, b1, b2, _),
TwoBitstringsMeasurement(_, b1, b2), 1,
[BoolArrayAsKetState(b1), BoolArrayAsKetState(b2)]);
}
@Test("Microsoft.Quantum.Katas.CounterSimulator")
operation T107_TwoBitstringsMeasurement () : Unit {
mutable b1 = [false, true];
mutable b2 = [true, false];
CheckTwoBitstringsMeasurement(b1, b2);
set b1 = [true, true, false];
set b2 = [false, true, true];
CheckTwoBitstringsMeasurement(b1, b2);
set b1 = [false, true, true, false];
set b2 = [false, true, true, true];
CheckTwoBitstringsMeasurement(b1, b2);
set b1 = [true, false, false, false];
set b2 = [true, false, true, true];
CheckTwoBitstringsMeasurement(b1, b2);
}
// ------------------------------------------------------
operation StatePrep_FindFirstDiff (bits1 : Bool[], bits2 : Bool[]) : Int {
for i in 0 .. Length(bits1) - 1 {
if bits1[i] != bits2[i] {
return i;
}
}
return -1;
}
// a combination of tasks 14 and 15 from the Superposition kata
operation StatePrep_BitstringSuperposition (qs : Qubit[], bits : Bool[][]) : Unit {
let L = Length(bits);
Fact(L == 1 or L == 2 or L == 4, "State preparation only supports arrays of 1, 2 or 4 bit strings");
if L == 1 {
for i in 0 .. Length(qs) - 1 {
if bits[0][i] {
X(qs[i]);
}
}
}
if L == 2 {
// find the index of the first bit at which the bit strings are different
let firstDiff = StatePrep_FindFirstDiff(bits[0], bits[1]);
// Hadamard corresponding qubit to create superposition
H(qs[firstDiff]);
// iterate through the bit strings again setting the final state of qubits
for i in 0 .. Length(qs) - 1 {
if bits[0][i] == bits[1][i] {
// if two bits are the same, apply X or nothing
if bits[0][i] {
X(qs[i]);
}
} else {
// if two bits are different, set their difference using CNOT
if i > firstDiff {
CNOT(qs[firstDiff], qs[i]);
if bits[0][i] != bits[0][firstDiff] {
X(qs[i]);
}
}
}
}
}
if L == 4 {
let N = Length(qs);
use anc = Qubit[2];
// Put two ancillas into equal superposition of 2-qubit basis states
ApplyToEachA(H, anc);
// Set up the right pattern on the main qubits with control on ancillas
for i in 0 .. 3 {
for j in 0 .. N - 1 {
if bits[i][j] {
(ControlledOnInt(i, X))(anc, qs[j]);
}
}
}
// Uncompute the ancillas, using patterns on main qubits as control
for i in 0 .. 3 {
if i % 2 == 1 {
(ControlledOnBitString(bits[i], X))(qs, anc[0]);
}
if i / 2 == 1 {
(ControlledOnBitString(bits[i], X))(qs, anc[1]);
}
}
}
}
operation StatePrep_SuperpositionMeasurement (qs : Qubit[], bits1 : Bool[][], bits2 : Bool[][], state : Int) : Unit {
let bits = state == 0 ? bits1 | bits2;
StatePrep_BitstringSuperposition(qs, bits);
}
// Helper function to convert an array of bit strings to its ket state representation
function IntArrayAsStateName (qubits : Int, bitStrings : Bool[][]) : String {
mutable statename = "";
for i in 0 .. Length(bitStrings) - 1 {
if i > 0 {
set statename += " + ";
}
set statename += BoolArrayAsKetState(bitStrings[i]);
}
return statename;
}
operation CheckSuperpositionBitstringsOneMeasurement (nQubits : Int, ints1 : Int[], ints2 : Int[]): Unit {
let bits1 = Mapped(IntAsBoolArray(_, nQubits), ints1);
let bits2 = Mapped(IntAsBoolArray(_, nQubits), ints2);
DistinguishStates_MultiQubit(nQubits, 2, StatePrep_SuperpositionMeasurement(_, bits1, bits2, _),
SuperpositionOneMeasurement(_, bits1, bits2), 1,
[IntArrayAsStateName(nQubits, bits1), IntArrayAsStateName(nQubits, bits2)]);
}
@Test("Microsoft.Quantum.Katas.CounterSimulator")
operation T108_SuperpositionOneMeasurement () : Unit {
// note that bit strings in the comments (big endian) are the reverse of the bit strings passed to the solutions (little endian)
CheckSuperpositionBitstringsOneMeasurement(2, [2], // [10]
[1]); // [01]
CheckSuperpositionBitstringsOneMeasurement(2, [2,3], // [10,11]
[1,0]); // [01,00]
CheckSuperpositionBitstringsOneMeasurement(2, [2], // [10]
[1,0]); // [01,00]
CheckSuperpositionBitstringsOneMeasurement(4, [15,7], // [1111,0111]
[0,8]); // [0000,1000]
CheckSuperpositionBitstringsOneMeasurement(4, [15,7], // [1111,0111]
[0,8,10,12]); // [0000,1000,1010,1100]
CheckSuperpositionBitstringsOneMeasurement(5, [30,14,10,6], // [11110,01110,01010,00110]
[1,17,21,25]); // [00001,10001,10101,11001]
CheckSuperpositionBitstringsOneMeasurement(2, [0,2], // [00,10]
[3]); // [11]
CheckSuperpositionBitstringsOneMeasurement(3, [5,7], // [101,111]
[2]); // [010]
CheckSuperpositionBitstringsOneMeasurement(4, [13,11,7,3], // [1101,1011,0111,0011]
[2,4]); // [0010,0100]
}
// ------------------------------------------------------
operation CheckSuperpositionBitstringsMeasurement (nQubits : Int, ints1 : Int[], ints2 : Int[]): Unit {
let bits1 = Mapped(IntAsBoolArray(_, nQubits), ints1);
let bits2 = Mapped(IntAsBoolArray(_, nQubits), ints2);
DistinguishStates_MultiQubit(nQubits, 2, StatePrep_SuperpositionMeasurement(_, bits1, bits2, _),
SuperpositionMeasurement(_, bits1, bits2), 0,
[IntArrayAsStateName(nQubits, bits1), IntArrayAsStateName(nQubits, bits2)]);
}
@Test("Microsoft.Quantum.Katas.CounterSimulator")
operation T109_SuperpositionMeasurement () : Unit {
// note that bit strings in the comments (big endian) are the reverse of the bit strings passed to the solutions (little endian)
CheckSuperpositionBitstringsMeasurement(2, [2], // [10]
[1]); // [01]
CheckSuperpositionBitstringsMeasurement(2, [2,1], // [10,01]
[3,0]); // [11,00]
CheckSuperpositionBitstringsMeasurement(2, [2], // [10]
[3,0]); // [11,00]
CheckSuperpositionBitstringsMeasurement(4, [15,6], // [1111,0110]
[0,14]); // [0000,1110]
CheckSuperpositionBitstringsMeasurement(4, [15,7], // [1111,0111]
[0,8,10,13]); // [0000,1000,1010,1101]
CheckSuperpositionBitstringsMeasurement(5, [30,14,10,7], // [11110,01110,01010,00111]
[1,17,21,27]); // [00001,10001,10101,11011]
CheckSuperpositionBitstringsMeasurement(2, [2,1], // [10,01]
[3]); // [11]
CheckSuperpositionBitstringsMeasurement(3, [7,5], // [111,101]
[2]); // [010]
CheckSuperpositionBitstringsMeasurement(4, [13,11,7,3], // [1101,1011,0111,0011]
[5,2]); // [0101,0010]
}
// ------------------------------------------------------
operation WState_Arbitrary_Reference (qs : Qubit[]) : Unit is Adj + Ctl {
let N = Length(qs);
if N == 1 {
// base case of recursion: |1⟩
X(qs[0]);
} else {
// |W_N⟩ = |0⟩|W_(N-1)⟩ + |1⟩|0...0⟩
// do a rotation on the first qubit to split it into |0⟩ and |1⟩ with proper weights
// |0⟩ -> sqrt((N-1)/N) |0⟩ + 1/sqrt(N) |1⟩
let theta = ArcSin(1.0 / Sqrt(IntAsDouble(N)));
Ry(2.0 * theta, qs[0]);
// do a zero-controlled W-state generation for qubits 1..N-1
X(qs[0]);
Controlled WState_Arbitrary_Reference(qs[0 .. 0], qs[1 .. N - 1]);
X(qs[0]);
}
}
operation StatePrep_AllZerosOrWState (qs : Qubit[], state : Int) : Unit {
if state == 1 {
// prep W state
WState_Arbitrary_Reference(qs);
}
}
@Test("Microsoft.Quantum.Katas.CounterSimulator")
operation T110_AllZerosOrWState () : Unit {
for i in 2 .. 6 {
DistinguishStates_MultiQubit(i, 2, StatePrep_AllZerosOrWState, AllZerosOrWState, 0, ["|0...0⟩", "|W⟩"]);
}
}
// ------------------------------------------------------
operation GHZ_State_Reference (qs : Qubit[]) : Unit is Adj {
H(Head(qs));
for q in Rest(qs) {
CNOT(Head(qs), q);
}
}
operation StatePrep_GHZOrWState (qs : Qubit[], state : Int) : Unit {
if state == 0 {
// prep GHZ state
GHZ_State_Reference(qs);
} else {
// prep W state
WState_Arbitrary_Reference(qs);
}
}
@Test("Microsoft.Quantum.Katas.CounterSimulator")
operation T111_GHZOrWState () : Unit {
for i in 2 .. 6 {
DistinguishStates_MultiQubit(i, 2, StatePrep_GHZOrWState, GHZOrWState, 0, ["|GHZ⟩", "|W⟩"]);
}
}
// ------------------------------------------------------
// 0 - |Φ⁺⟩ = (|00⟩ + |11⟩) / sqrt(2)
// 1 - |Φ⁻⟩ = (|00⟩ - |11⟩) / sqrt(2)
// 2 - |Ψ⁺⟩ = (|01⟩ + |10⟩) / sqrt(2)
// 3 - |Ψ⁻⟩ = (|01⟩ - |10⟩) / sqrt(2)
operation StatePrep_BellState (qs : Qubit[], state : Int) : Unit {
H(qs[0]);
CNOT(qs[0], qs[1]);
// now we have |00⟩ + |11⟩ - modify it based on state arg
if state % 2 == 1 {
// negative phase
Z(qs[1]);
}
if state / 2 == 1 {
X(qs[1]);
}
}
@Test("Microsoft.Quantum.Katas.CounterSimulator")
operation T112_BellState () : Unit {
DistinguishStates_MultiQubit(2, 4, StatePrep_BellState, BellState, 0, ["|Φ⁺⟩ = (|00⟩ + |11⟩) / sqrt(2)",
"|Φ⁻⟩ = (|00⟩ - |11⟩) / sqrt(2)",
"|Ψ⁺⟩ = (|01⟩ + |10⟩) / sqrt(2)",
"|Ψ⁻⟩ = (|01⟩ - |10⟩) / sqrt(2)"]);
}
// ------------------------------------------------------
// 0 - (|00⟩ + |01⟩ + |10⟩ + |11⟩) / 2
// 1 - (|00⟩ - |01⟩ + |10⟩ - |11⟩) / 2
// 2 - (|00⟩ + |01⟩ - |10⟩ - |11⟩) / 2
// 3 - (|00⟩ - |01⟩ - |10⟩ + |11⟩) / 2
operation StatePrep_TwoQubitState (qs : Qubit[], state : Int) : Unit {
// start with state prep of basis vectors
StatePrep_BasisStateMeasurement(qs, state);
H(qs[0]);
H(qs[1]);
}
@Test("Microsoft.Quantum.Katas.CounterSimulator")
operation T113_TwoQubitState () : Unit {
DistinguishStates_MultiQubit(2, 4, StatePrep_TwoQubitState, TwoQubitState, 0, ["(|00⟩ + |01⟩ + |10⟩ + |11⟩) / 2",
"(|00⟩ - |01⟩ + |10⟩ - |11⟩) / 2",
"(|00⟩ + |01⟩ - |10⟩ - |11⟩) / 2",
"(|00⟩ - |01⟩ - |10⟩ + |11⟩) / 2"]);
}
// ------------------------------------------------------
// 0 - ( |00⟩ - |01⟩ - |10⟩ - |11⟩) / 2
// 1 - (-|00⟩ + |01⟩ - |10⟩ - |11⟩) / 2
// 2 - (-|00⟩ - |01⟩ + |10⟩ - |11⟩) / 2
// 3 - (-|00⟩ - |01⟩ - |10⟩ + |11⟩) / 2
operation StatePrep_TwoQubitStatePartTwo (qs : Qubit[], state : Int) : Unit {
// start with state prep of basis vectors
StatePrep_BasisStateMeasurement(qs, state);
// now apply all gates for unitary in reference impl (in reverse + adjoint)
within {
ApplyToEachA(X, qs);
Controlled Z([qs[0]], qs[1]);
ApplyToEachA(X, qs);
} apply {
ApplyToEach(H, qs);
}
SWAP(qs[0], qs[1]);
}
@Test("Microsoft.Quantum.Katas.CounterSimulator")
operation T114_TwoQubitStatePartTwo () : Unit {
DistinguishStates_MultiQubit(2, 4, StatePrep_TwoQubitStatePartTwo, TwoQubitStatePartTwo, 0, ["(+|00⟩ - |01⟩ - |10⟩ - |11⟩) / 2",
"(-|00⟩ + |01⟩ - |10⟩ - |11⟩) / 2",
"(-|00⟩ - |01⟩ + |10⟩ - |11⟩) / 2",
"(-|00⟩ - |01⟩ - |10⟩ + |11⟩) / 2"]);
}
// ------------------------------------------------------
operation StatePrep_ThreeQubitMeasurement (qs : Qubit[], state : Int) : Unit is Adj {
WState_Arbitrary_Reference(qs);
if state == 0 {
// prep 1/sqrt(3) ( |100⟩ + ω |010⟩ + ω² |001⟩ )
R1(2.0 * PI() / 3.0, qs[1]);
R1(4.0 * PI() / 3.0, qs[2]);
} else {
// prep 1/sqrt(3) ( |100⟩ + ω² |010⟩ + ω |001⟩ )
R1(4.0 * PI() / 3.0, qs[1]);
R1(2.0 * PI() / 3.0, qs[2]);
}
}
@Test("Microsoft.Quantum.Katas.CounterSimulator")
operation T115_ThreeQubitMeasurement () : Unit {
DistinguishStates_MultiQubit(3, 2, StatePrep_ThreeQubitMeasurement, ThreeQubitMeasurement, 0,
["1/sqrt(3) (|100⟩ + ω |010⟩ + ω² |001⟩)",
"1/sqrt(3) (|100⟩ + ω² |010⟩ + ω |001⟩)"]);
}
//////////////////////////////////////////////////////////////////
// Part II*. Discriminating Nonorthogonal States
//////////////////////////////////////////////////////////////////
operation StatePrep_IsQubitZeroOrPlus (q : Qubit, state : Int) : Unit {
if state != 0 {
// convert |0⟩ to |+⟩
H(q);
}
}
// "Framework" operation for testing multi-qubit tasks for distinguishing states of an array of qubits
// with Int return. Framework tests against a threshold parameter for the fraction of runs that must succeed.
operation DistinguishStates_MultiQubit_Threshold (Nqubit : Int, Nstate : Int, threshold : Double, statePrep : ((Qubit, Int) => Unit), testImpl : (Qubit => Bool)) : Unit {
let nTotal = 1000;
mutable nOk = 0;
use qs = Qubit[Nqubit];
for i in 1 .. nTotal {
// get a random integer to define the state of the qubits
let state = DrawRandomInt(0, Nstate - 1);
// do state prep: convert |0⟩ to outcome with return equal to state
statePrep(qs[0], state);
// get the solution's answer and verify that it's a match
let ans = testImpl(qs[0]);
if ans == (state == 0) {
set nOk += 1;
}
// we're not checking the state of the qubit after the operation
ResetAll(qs);
}
if IntAsDouble(nOk) < threshold * IntAsDouble(nTotal) {
fail $"{nTotal - nOk} test runs out of {nTotal} returned incorrect state which does not meet the required threshold of at least {threshold * 100.0}%.";
}
}
@Test("QuantumSimulator")
operation T201_IsQubitZeroOrPlus () : Unit {
DistinguishStates_MultiQubit_Threshold(1, 2, 0.8, StatePrep_IsQubitZeroOrPlus, IsQubitPlusOrZero);
}
// ------------------------------------------------------
// "Framework" operation for testing multi-qubit tasks for distinguishing states of an array of qubits
// with Int return. Framework tests against a threshold parameter for the fraction of runs that must succeed.
// Framework tests in the USD scenario, i.e., it is allowed to respond "inconclusive" (with some probability)
// up to given threshold, but it is never allowed to err if an actual conclusive response is given.
operation USD_DistinguishStates_MultiQubit_Threshold (Nqubit : Int, Nstate : Int, thresholdInconcl : Double, thresholdConcl : Double, statePrep : ((Qubit, Int) => Unit), testImpl : (Qubit => Int)) : Unit {
let nTotal = 10000;
// counts total inconclusive answers
mutable nInconc = 0;
// counts total conclusive |0⟩ state identifications
mutable nConclOne = 0;
// counts total conclusive |+> state identifications
mutable nConclPlus = 0;
use qs = Qubit[Nqubit];
for i in 1 .. nTotal {
// get a random integer to define the state of the qubits
let state = DrawRandomInt(0, Nstate - 1);
// do state prep: convert |0⟩ to outcome with return equal to state
statePrep(qs[0], state);
// get the solution's answer and verify that it's a match
let ans = testImpl(qs[0]);
// check that the answer is actually in allowed range
if (ans < -1 or ans > 1) {
fail $"state {state} led to invalid response {ans}.";
}
// keep track of the number of inconclusive answers given
if ans == -1 {
set nInconc += 1;
}
if (ans == 0 and state == 0) {
set nConclOne += 1;
}
if (ans == 1 and state == 1) {
set nConclPlus += 1;
}
// check if upon conclusive result the answer is actually correct
if (ans == 0 and state == 1 or ans == 1 and state == 0) {
fail $"state {state} led to incorrect conclusive response {ans}.";
}
// we're not checking the state of the qubit after the operation
ResetAll(qs);
}
if IntAsDouble(nInconc) > thresholdInconcl * IntAsDouble(nTotal) {
fail $"{nInconc} test runs out of {nTotal} returned inconclusive which does not meet the required threshold of at most {thresholdInconcl * 100.0}%.";
}
if IntAsDouble(nConclOne) < thresholdConcl * IntAsDouble(nTotal) {
fail $"Only {nConclOne} test runs out of {nTotal} returned conclusive |0⟩ which does not meet the required threshold of at least {thresholdConcl * 100.0}%.";
}
if IntAsDouble(nConclPlus) < thresholdConcl * IntAsDouble(nTotal) {
fail $"Only {nConclPlus} test runs out of {nTotal} returned conclusive |+> which does not meet the required threshold of at least {thresholdConcl * 100.0}%.";
}
}
@Test("QuantumSimulator")
operation T202_IsQubitZeroOrPlusSimpleUSD () : Unit {
USD_DistinguishStates_MultiQubit_Threshold(1, 2, 0.8, 0.1, StatePrep_IsQubitZeroOrPlus, IsQubitPlusZeroOrInconclusiveSimpleUSD);
}
// ------------------------------------------------------
operation StatePrep_IsQubitNotInABC (q : Qubit, state : Int) : Unit {
let alpha = (2.0 * PI()) / 3.0;
H(q);
if state == 0 {
// convert |0⟩ to 1/sqrt(2) (|0⟩ + |1⟩)
}
elif state == 1 {
// convert |0⟩ to 1/sqrt(2) (|0⟩ + ω |1⟩), where ω = exp(2iπ/3)
R1(alpha, q);
}
else {
// convert |0⟩ to 1/sqrt(2) (|0⟩ + ω² |1⟩), where ω = exp(2iπ/3)
R1(2.0 * alpha, q);
}
}
// "Framework" operation for testing multi-qubit tasks for distinguishing states of an array of qubits
// with Int return. Framework tests instances of the Peres/Wootters game. In this game, one of three
// "trine" states is presented and the algorithm must answer with a label that does not correspond
// to one of the label of the input state.
operation ABC_DistinguishStates_MultiQubit_Threshold (Nqubit : Int, Nstate : Int, statePrep : ((Qubit, Int) => Unit), testImpl : (Qubit => Int)) : Unit {
let nTotal = 1000;
use qs = Qubit[Nqubit];
for i in 1 .. nTotal {
// get a random integer to define the state of the qubits
let state = DrawRandomInt(0, Nstate - 1);
// do state prep: convert |0⟩ to outcome with return equal to state
statePrep(qs[0], state);
// get the solution's answer and verify that it's a match
let ans = testImpl(qs[0]);
// check that the value of ans is 0, 1 or 2
if (ans < 0 or ans > 2) {
fail "You can not return any value other than 0, 1 or 2.";
}
// check if upon conclusive result the answer is actually correct
if ans == state {
fail $"State {state} led to incorrect conclusive response {ans}.";
}
// we're not checking the state of the qubit after the operation
ResetAll(qs);
}
}
@Test("QuantumSimulator")
operation T203_IsQubitNotInABC () : Unit {
ABC_DistinguishStates_MultiQubit_Threshold(1, 3, StatePrep_IsQubitNotInABC, IsQubitNotInABC);
}
}