-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain.java
218 lines (183 loc) · 7.01 KB
/
Main.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import weka.core.Instances;
import java.io.BufferedReader;
import java.io.FileReader;
import java.util.Scanner;
import weka.filters.Filter;
import weka.filters.supervised.attribute.Discretize;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import java.util.Random;
import java.io.ObjectOutputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.FileInputStream;
public class Main {
private Scanner input;
public Instances ReadArff(String filename) throws Exception {
BufferedReader reader = new BufferedReader(
new FileReader(filename));
Instances data = new Instances(reader);
data.setClassIndex(data.numAttributes() - 1);
reader.close();
return data;
}
public Instances Discretize(Instances data) throws Exception {
Discretize filter = new Discretize();
Instances newData;
filter.setInputFormat(data);
newData = Filter.useFilter(data, filter);
return newData;
}
public Classifier TenFoldsCrossValidation(Instances data, int idxClass) throws Exception{
Classifier nb = new NaiveBayes();
((NaiveBayes) nb).setKelas(idxClass);
nb.buildClassifier(data);
Evaluation eval = new Evaluation(data);
eval.crossValidateModel(nb, data, 10, new Random(1));
System.out.println();
System.out.println("=== Summary ===");
System.out.println(eval.toSummaryString());
System.out.println(eval.toMatrixString());
return nb;
}
public Classifier SplitTest(Instances data, int percent, int idxClass) throws Exception {
int trainSize = (int) Math.round(data.numInstances() * percent / 100);
int testSize = data.numInstances() - trainSize;
Instances train = new Instances(data, 0, trainSize);
Instances test = new Instances(data, trainSize, testSize);
Classifier nb = new NaiveBayes();
((NaiveBayes) nb).setKelas(idxClass);
nb.buildClassifier(train);
Evaluation eval = new Evaluation(test);
eval.evaluateModel(nb, test);
System.out.println();
System.out.println("=== Summary ===");
System.out.println(eval.toSummaryString());
System.out.println(eval.toMatrixString());
return nb;
}
public Classifier FullTrainingSchema(Instances data, int idxClass) throws Exception{
Classifier nb = new NaiveBayes();
((NaiveBayes) nb).setKelas(idxClass);
nb.buildClassifier(data);
Evaluation eval = new Evaluation(data);
eval.evaluateModel(nb, data);
System.out.println();
System.out.println("=== Summary ===");
System.out.println(eval.toSummaryString());
System.out.println(eval.toMatrixString());
return nb;
}
public void saveModel(String filename, Classifier cls) throws Exception {
ObjectOutputStream output = new ObjectOutputStream(new FileOutputStream(filename));
output.writeObject(cls);
output.flush();
output.close();
}
public Classifier loadModel(String filename) throws Exception{
ObjectInputStream fileinput = new ObjectInputStream(new FileInputStream(filename));
Classifier cls = (Classifier) fileinput.readObject();
fileinput.close();
return cls;
}
public void classifyData(Classifier model, Instances data) throws Exception {
Evaluation eval = new Evaluation(data);
eval.evaluateModel(model, data);
System.out.println();
System.out.println("=== Summary ===");
System.out.println(eval.toSummaryString());
System.out.println(eval.toMatrixString());
}
/**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception{
Main main = new Main();
Scanner input = new Scanner(System.in);
System.out.println("==============================");
System.out.println("=== Tubes AI 2 ===");
System.out.println("==============================");
System.out.println();
int pilihan;
do {
System.out.println("Menu: 1. Mengolah dataset");
System.out.println(" 2. Membaca model dan mengklasifikasi Instances");
System.out.println(" 3. Exit");
System.out.print("Masukkan pilihan: ");
pilihan = input.nextInt();
if (pilihan == 1) {
System.out.print("Masukkan file dataset: ");
String filename = input.next();
System.out.println("\nMembaca " + filename + "...");
Instances data = main.ReadArff(filename);
System.out.print("Masukkan indeks kelas: ");
int idxClass = input.nextInt();
data.setClassIndex(--idxClass);
System.out.println("\nHeader dataset:\n");
System.out.println(new Instances(data, 0));
int pilihan2;
do {
System.out.println("Menu: 1. Melakukan Discretize pada data");
System.out.println(" 2. Melakukan pembelajaran dataset dengan metode 10-fold cross validation");
System.out.println(" 3. Melakukan pembelajaran dataset dengan metode split test");
System.out.println(" 4. Melakukan pembelajaran dataset dengan metode full-training");
System.out.println(" 5. Back");
System.out.print("Masukkan pilihan: ");
pilihan2 = input.nextInt();
Classifier cls = new NaiveBayes();
if (pilihan2 == 1) {
data = main.Discretize(data);
System.out.println("\nHeader dataset setelah filter:\n");
System.out.println(new Instances(data, 0));
}
else if (pilihan2 == 2) {
cls = main.TenFoldsCrossValidation(data, idxClass + 1);
}
else if (pilihan2 == 3) {
System.out.print("Masukkan persentase split: ");
int percent = input.nextInt();
cls = main.SplitTest(data, percent, idxClass + 1);
}
else if (pilihan2 == 4) {
cls = main.FullTrainingSchema(data, idxClass + 1);
}
else if (pilihan2 == 5) {
System.out.println();
}
if (pilihan2 == 2 || pilihan2 == 3 || pilihan2 == 4 || pilihan2 == 6){
System.out.println("Save model pembelajaran? (y/n)");
System.out.print("Masukkan pilihan: ");
char answer = (char) System.in.read();
if(answer == 'y'){
System.out.print("Masukkan destinasi penyimpanan: ");
filename = input.next();
main.saveModel(filename, cls);
System.out.println("Model berhasil disimpan pada "+filename);
}
System.out.println();
}
} while (pilihan2 != 5);
}
else if (pilihan == 2) {
System.out.print("Masukkan file model: ");
String filename;
filename = input.next();
System.out.println("\nMembaca model...\n");
Classifier model = main.loadModel(filename);
System.out.println(model);
System.out.print("Masukkan file dataset: ");
String testFile = input.next();
System.out.println("\nMembaca " + testFile + "...");
Instances data = main.ReadArff(testFile);
System.out.print("Masukkan indeks kelas: ");
int idxClass = input.nextInt();
data.setClassIndex(--idxClass);
main.classifyData(model, data);
}
else if (pilihan == 3) {
input.close();
}
} while (pilihan != 3);
}
}