-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquantum.v
531 lines (468 loc) · 25.1 KB
/
quantum.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
(* Main quantum library *)
From mathcomp Require Import all_ssreflect all_algebra all_field all_real_closed.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope ring_scope.
Import Num.Theory GRing.Theory ComplexField.
Require Import other_stuff complex_stuff.
Section QubitVectorDef.
Variable n: nat.
(* The qubit datatype, parametrised by the length of the vector and a proof that it is a unit vector.
* (qubit_vector_of n) is therefore the type of n-qubit vectors. *)
Structure qubit_vector_of := QubitVector {
vector:> 'cV[complex_stuff.R [i]]_(2 ^ n);
vector_is_unit: \sum_(i < 2^n) `|vector i 0| ^+ 2 == 1
}.
Canonical qubit_vector_subType := Eval hnf in [subType for vector].
Implicit Type qv: qubit_vector_of.
Definition qubit_vector qv mkQV : qubit_vector_of :=
mkQV (let: QubitVector _ qvP := qv return \sum_(i < 2^n) `|qv i 0|^+2 == 1 in qvP).
Lemma qubit_vectorE qv : qubit_vector (fun qvP => @QubitVector qv qvP) = qv.
Proof.
by case: qv.
Qed.
End QubitVectorDef.
Lemma zero_qubitP: \sum_(i < 2^0) `|((1:R[i])%:M) i 0| ^+ 2 == 1.
Proof.
by rewrite big_ord1; rewrite mxE; rewrite normc_def; rewrite expr1n; rewrite expr0n; rewrite addr0; rewrite sqrtr1; rewrite expr1n.
Qed.
Canonical zero_qubit := QubitVector zero_qubitP.
Section GateDef.
Variable n: nat.
(* The gate datatype, paramtetrised by its size (number of inputs) and proof that it is a unitary matrix *)
Structure gate_of := Gate {
matrix:> 'M[complex_stuff.R [i]]_(2 ^ n);
matrix_is_unitary: unitarymx matrix
}.
Canonical matrix_subType := Eval hnf in [subType for matrix].
Implicit Type g: gate_of.
Definition gate g mkG : gate_of :=
mkG (let: Gate _ gP := g return unitarymx g in gP).
Lemma gateE g : gate (fun gP => @Gate g gP) = g.
Proof.
by case: g.
Qed.
End GateDef.
(* The apply operator; (apply q g) applies gate g to qubit vector q.
* Needs proof that this results in a new qubit, which is by using the fact that gates are unitary matrices. *)
Lemma applyP: forall n g q,
\sum_(i < 2^n) `|(matrix g *m vector q) i 0| ^+ 2 == 1.
intros n g q; destruct q as [q Hq]; destruct g as [g Hg]; simpl;
rewrite -conjugate_is_sum; rewrite -unitary_preserves_product;
[ rewrite mxE; rewrite -(eqP Hq); apply/eqP; apply eq_bigr; intros i _;
rewrite mulrC; rewrite !mxE; symmetry; apply sqr_normc
| apply Hg
].
Qed.
Canonical apply n g q := (@QubitVector n _ (applyP g q)).
Lemma I_gateP: (@unitarymx 2 'M{[:: [:: 1; 0]; [:: 0; 1]]}).
unfold unitarymx; apply/eqP; apply/matrixP; intros x y; rewrite !mxE; rewrite !big_ord_recl;
rewrite big_ord0. rewrite !mxE; simpl.
destruct x as [m H]; destruct m as [ | m]; destruct y as [m' H']; destruct m' as [ | m'];
[
| destruct m' as [ | m'];
[ rewrite mulr0; rewrite add0r; rewrite addr0
| absurd (m'.+2 < 2)%N; auto; apply H'
]
| destruct m as [ | m ];
[
| absurd (m.+2 < 2)%N; auto; apply H
]
| destruct m as [ | m ];
[ destruct m' as [ | m' ];
[
| absurd (m'.+2 < 2)%N; auto; apply H'
]
| absurd (m.+2 < 2)%N; auto; apply H
]
];
simpl; try repeat (rewrite mulr0 || rewrite mul0r || rewrite addr0 || rewrite add0r || rewrite mul1r || rewrite mulr1);
rewrite oppr0 //.
Qed.
Canonical I_gate := (@Gate 1 _ I_gateP).
(* Definition of the X gate *)
Lemma X_gateP: (@unitarymx 2 'M{[:: [:: 0; 1]; [:: 1; 0]]}).
Proof.
apply/eqP. apply/matrixP; intros x y; rewrite !mxE; rewrite !big_ord_recl; rewrite big_ord0; rewrite !mxE;
destruct x as [[ | [ | x]] Hx]; destruct y as [[ | [ | y]] Hy]; simpl;
try (absurd (x.+2 < 2)%N; auto); try (absurd (y.+2 < 2)%N; auto);
try repeat (rewrite mul0r || rewrite mulr0 || rewrite mulr1 || rewrite addr0 || rewrite add0r || rewrite oppr0 || rewrite mulNr || rewrite mulrN);
auto.
Qed.
Canonical X_gate := (@Gate 1 _ X_gateP).
(* Definition of the Y gate *)
Lemma Y_gateP: (@unitarymx 2 'M{[:: [:: 0; -'i]; [:: 'i; 0]]}).
Proof.
apply/eqP. apply/matrixP; intros x y; rewrite !mxE; rewrite !big_ord_recl; rewrite big_ord0; rewrite !mxE;
destruct x as [[ | [ | x]] Hx]; destruct y as [[ | [ | y]] Hy]; simpl;
try (absurd (x.+2 < 2)%N; auto); try (absurd (y.+2 < 2)%N; auto);
try repeat (rewrite mul0r || rewrite mulr0 || rewrite mulr1 || rewrite addr0 || rewrite add0r || rewrite oppr0 || rewrite mulNr || rewrite mulrN || rewrite opprK || rewrite -expr2 || rewrite sqr_i || rewrite complex_minus_i);
auto.
Qed.
Canonical Y_gate := (@Gate 1 _ Y_gateP).
(* Definition of the Z gate *)
Lemma Z_gateP: (@unitarymx 2 'M{[:: [:: 1; 0]; [:: 0; -1]]}).
Proof.
apply/eqP; apply/matrixP; intros x y; rewrite !mxE; rewrite !big_ord_recl; rewrite big_ord0; rewrite !mxE;
destruct x as [[ | [ | x]] Hx]; destruct y as [[ | [ | y]] Hy]; simpl;
try (absurd (x.+2 < 2)%N; auto); try (absurd (y.+2 < 2)%N; auto);
try repeat (rewrite mul0r || rewrite mulr0 || rewrite mulr1 || rewrite addr0 || rewrite add0r || rewrite oppr0 || rewrite mulNr || rewrite mulrN);
auto;
rewrite -oppr0; unfold GRing.opp; simpl; rewrite !opprK //.
Qed.
Canonical Z_gate := (@Gate 1 _ Z_gateP).
(* Definition of the Hadamard gate *)
Lemma hadamard_gateP: (@unitarymx 2 'M{[:: [:: (1/Num.sqrt (2%:R))%:C; (1/Num.sqrt (2%:R))%:C];
[:: (1/Num.sqrt (2%:R))%:C; -(1/Num.sqrt (2%:R))%:C]]})%C.
Proof.
apply/eqP; apply/matrixP; intros x y; rewrite !mxE; rewrite !big_ord_recl; rewrite big_ord0; rewrite !mxE;
destruct x as [[ | [ | x]] Hx]; destruct y as [[ | [ | y]] Hy]; simpl;
try (absurd (x.+2 < 2)%N; auto); try (absurd (y.+2 < 2)%N; auto); rewrite addr0; rewrite !oppr0.
rewrite mulr_real_complex. rewrite mulf_div. rewrite mulr1. rewrite -expr2. rewrite sqr_sqrtr; [|apply ler0n].
rewrite addr_real_complex. rewrite addf_div; try (rewrite -unitfE; apply unitf_gt0; apply ltr0Sn).
rewrite !mul1r. rewrite !mulr_natl. rewrite [2%:R *+ 2]mulr2n.
rewrite divrr //; try (apply unitf_gt0; apply addr_gt0; apply ltr0Sn).
rewrite mulrN. rewrite mulr_real_complex; rewrite mulf_div; rewrite mulr1; rewrite -expr2; rewrite sqr_sqrtr; [| apply ler0n].
rewrite subr_real_complex. rewrite -mulNr. rewrite addf_div; try (rewrite -unitfE; apply unitf_gt0; apply ltr0Sn).
rewrite mulNr. rewrite !mul1r. rewrite addrN. rewrite mul0r //.
rewrite -mulNr; rewrite !mulr_real_complex; rewrite !mulf_div. rewrite !mulr1. rewrite -expr2. rewrite sqr_sqrtr; [| apply ler0n].
rewrite addr_real_complex. rewrite addf_div; try (rewrite -unitfE; apply unitf_gt0; apply ltr0Sn).
rewrite mulNr. rewrite mul1r. rewrite addrN. rewrite mul0r //.
rewrite oppr_real_complex. rewrite -!mulNr. rewrite !mulr_real_complex. rewrite !mulf_div. rewrite mulNr. rewrite mulrN. rewrite opprK. rewrite mulr1. rewrite -expr2; rewrite sqr_sqrtr; [|apply ler0n].
rewrite addr_real_complex; rewrite addf_div; try (rewrite -unitfE; apply unitf_gt0; apply ltr0Sn).
rewrite !mul1r; rewrite !mulr_natl; rewrite [2%:R *+ 2]mulr2n.
rewrite divrr //; try (apply unitf_gt0; apply addr_gt0; apply ltr0Sn).
Qed.
Canonical hadamard_gate := (@Gate 1 _ hadamard_gateP).
(* Definition of the Cnot gate *)
Lemma cnot_gateP: (@unitarymx 4 'M{[:: [:: 1; 0; 0; 0]; [:: 0; 1; 0; 0]; [:: 0; 0; 0; 1]; [:: 0; 0; 1; 0]]}).
Proof.
apply/eqP; apply/matrixP; intros x y; rewrite !mxE; rewrite !big_ord_recl; rewrite big_ord0; rewrite !mxE.
destruct x as [[ | [ | [ | [ | x]]]] Hx]; destruct y as [[ | [ | [ | [ | y]]]] Hy]; simpl;
try (absurd (x.+4 < 4)%N; auto); try (absurd (y.+4 < 4)%N; auto);
try repeat (rewrite !mulr0 || rewrite !mul0r || rewrite !addr0 || rewrite !add0r || rewrite !mulr1 || rewrite !oppr0 || reflexivity).
Qed.
Canonical cnot_gate := (@Gate 2 _ cnot_gateP).
(* Here we begin the definitions pertaining to measurement. *)
(* A binary predicate to select the parts of a qubit vector that represent a specific qubit measuring as 1.
In a 3-qubit vector, which has 8 elements, the elements represent P(|000>), P(|001>), P(|010>), ..., P(|111>).
Therefore, the elements representing bit 1 (counting from 0) measuring as 1 are elements 2, 3, 6 and 7
(if we start counting at 0).
i.e. the elements n where n modulo 4 is 2 or 3 *)
Definition select n (i: 'I_(2^n)) (bit: 'I_n) :=
(i %% (2^(bit + 1)) >= 2^bit)%N.
(* The probabilities that qubit b of qubit vector q measures as 0 or 1 respectively. *)
Local Open Scope complex_scope.
Definition prob_0 {n} b q: R :=
\sum_(i < 2^n | ~~select i b) (normc ((vector q) i 0)) ^+ 2.
Definition prob_1 {n} b q: R :=
\sum_(i < 2^n | select i b) (normc ((vector q) i 0)) ^+ 2.
(* The new qubit vectors that result after measuring bit b of qubit vector q and getting 0 or 1 respectively. *)
Definition measure_0 n (b: 'I_n) (q: qubit_vector_of n) :=
if prob_0 b q == 0
then (vector q)
else (\col_(i < 2^n)
if ~~(select i b)
then (vector q) i 0 / sqrtc (prob_0 b q)%:C
else 0).
Definition measure_1 n (b: 'I_n) (q: qubit_vector_of n) :=
if prob_1 b q == 0
then (vector q)
else (\col_(i < 2^n)
if select i b
then (vector q) i 0 / sqrtc (prob_1 b q)%:C
else 0).
(* The proofs that these new vectors are unitary. *)
Lemma measure_aux: forall I (r: seq I) P (F: I -> R[i]),
(\sum_(i <- r | P i) `|F i|^+2) \is a GRing.unit ->
\sum_(i <- r | P i) (`|F i / sqrtc (\sum_(i <- r | P i) `|F i|^+2)|^+2) == 1.
Proof.
intros I r P F; destruct r;
[ rewrite !big_nil; intros H; absurd (((0:R)%:C)%C \is a GRing.unit);
[ rewrite unitr0 //
| apply H
]
| rewrite !big_cons; destruct (P i); intros H;
[ rewrite normf_div; rewrite expr_div_n; replace (\sum_(j <- r | P j) `|F j / sqrtc _| ^+ 2) with
(\sum_(j <- r | P j) `|F j| ^+ 2 / `|sqrtc (`|F i| ^+ 2 + \sum_(j0 <- r | P j0) `|F j0| ^+ 2)| ^+ 2);
[ rewrite -mulr_suml; rewrite -mulrDl; rewrite sqrtc_norm;
[ rewrite divrr //; apply H
| apply addr_ge0; [ apply exprn_ge0; apply normr_ge0 | apply sumr_ge0; intros x _; apply exprn_ge0; apply normr_ge0 ]
]
| apply eq_bigr; intros x _; rewrite Num.Theory.normf_div; rewrite expr_div_n //
]
| replace (\sum_(j <- r | P j) `|F j / sqrtc _| ^+ 2) with
(\sum_(j <- r | P j) `|F j|^+2 / `|sqrtc (\sum_(j0 <- r | P j0) `|F j0|^+2)|^+2);
[ rewrite -mulr_suml; rewrite sqrtc_norm;
[ rewrite divrr //; apply H
| apply sumr_ge0; intros x _; apply exprn_ge0; apply normr_ge0
]
| apply eq_bigr; intros x _; rewrite normf_div; rewrite expr_div_n //
]
]
].
Qed.
Lemma blerp3: forall x: R,
x%:C = 0 -> x = 0.
Proof.
intros. transitivity (complex.Re (x%:C)).
auto.
assert (x%:C == 0). apply/eqP. apply H.
rewrite (eq_complex x%:C 0) in H0.
destruct (proj1 (andP _ _) H0).
rewrite H. auto.
Qed.
Lemma measure0_unitary: forall n b q, \sum_(i < 2^n) `|(measure_0 b q) i 0|^+2 == 1.
Proof.
move=> n b q. unfold measure_0. unfold prob_0.
destruct (\sum_(i0 < 2^n | ~~select i0 b) (normc ((vector q) i0 0)) ^+ 2 == 0) eqn:H.
rewrite H; apply (vector_is_unit q).
rewrite H. replace (\sum_(i < 2 ^ n) _) with
(\sum_(i < 2^n) (if ~~select i b then `|vector q i 0 / sqrtc (\sum_(i1 < 2 ^ n | ~~select i1 b) `|(vector q) i1 0| ^+2)| ^+ 2 else 0)).
rewrite -!big_mkcond. apply measure_aux. rewrite unitfE.
assert ((\sum_(i < 2^n | ~~select i b) (normc ((vector q) i 0)) ^+ 2)%:C =
\sum_(i < 2^n | ~~select i b) `|q i 0| ^+ 2).
rewrite -rcsum. apply eq_bigr. intros. rewrite normc_equiv. rewrite !expr2. simpc. reflexivity.
rewrite -H0. apply/eqP. intro.
apply Bool.eq_true_false_abs with (\sum_(i0 < 2^n|~~select i0 b) normc (q i0 0) ^+ 2 == 0).
apply/eqP. apply blerp3. apply H1. apply H.
apply eq_bigr. intros i _. rewrite mxE.
destruct (~~select i b).
repeat f_equal. rewrite -rcsum. apply eq_bigr. intros. (* here *)
rewrite normc_equiv. rewrite !real_complexE. rewrite !expr2. simpc. reflexivity.
auto; rewrite normr0; rewrite expr0n //.
Qed.
Lemma measure1_unitary: forall n b q,
\sum_(i < 2^n) `|(measure_1 b q) i 0|^+2 == 1.
Proof.
move=> n b q. unfold measure_1. unfold prob_1.
destruct (\sum_(i0 < 2^n | select i0 b) (normc ((vector q) i0 0)) ^+ 2 == 0) eqn:H.
rewrite H; apply (vector_is_unit q).
rewrite H; replace (\sum_(i < 2 ^ n) _) with
(\sum_(i < 2^n) (if select i b then `|vector q i 0 / sqrtc (\sum_(i1 < 2 ^ n | select i1 b) `|(vector q) i1 0| ^+2)| ^+ 2 else 0)).
rewrite -!big_mkcond. apply measure_aux. rewrite unitfE.
assert ((\sum_(i < 2^n | select i b) (normc ((vector q) i 0)) ^+ 2)%:C =
\sum_(i < 2^n | select i b) `|q i 0| ^+ 2).
rewrite -rcsum. apply eq_bigr. intros. rewrite normc_equiv. rewrite !expr2. simpc. reflexivity.
rewrite -H0. apply/eqP. intro.
apply Bool.eq_true_false_abs with (\sum_(i0 < 2^n|select i0 b) normc (q i0 0) ^+ 2 == 0).
apply/eqP. apply blerp3. apply H1. apply H.
apply eq_bigr; intros i _; rewrite mxE; destruct (select i b);
[ repeat f_equal; rewrite -rcsum; apply eq_bigr; intros;
rewrite normc_equiv; rewrite !real_complexE; rewrite !expr2; simpc; reflexivity
| auto; rewrite normr0; rewrite expr0n //
].
Qed.
(* The measure function. measure_p b q returns a tuple of two pairs; the first element of each pair is the
* probability that bit b of qubit vector q is 0 or 1 respectively; the second element of each pair is the
* new qubit vector that results in each case. *)
Definition measure_p (n: nat) (b: 'I_n) (q: qubit_vector_of n):
(R * qubit_vector_of n) * (R * qubit_vector_of n) :=
((prob_0 b q, (QubitVector (measure0_unitary b q))),
(prob_1 b q, (QubitVector (measure1_unitary b q)))).
(* Qubit vector casting. If m = n, then the datatypes (qubit_vector m) and (qubit_vector n) are interchangeable. *)
Lemma castP:
forall m q n (Heq: m = n), \sum_(i < 2^n) `|(castmx (f_equal (expn 2) Heq, (eq_S 0 0 (eqP (eq_refl 0)))%N) (vector q)) i 0| ^+ 2 == 1.
Proof.
intros. rewrite <- (eqP (vector_is_unit q)).
apply/eqP. apply sum_cast with (f_equal (expn 2) (sym_eq Heq)).
auto.
intros. rewrite castmxE. rewrite cast_ord_id.
unfold cast_ord. repeat f_equal. apply eq_irrelevance.
Qed.
Canonical cast m q n Heq := (@QubitVector n _ (@castP m q n Heq)).
Lemma cast_id: forall n (h: qubit_vector_of n) (Heq: n = n),
cast h Heq = h.
Proof.
intros; destruct h as [h Hh]. unfold cast. apply val_inj; simpl; apply castmx_id.
Qed.
Lemma cast_irrelevance: forall n (h: qubit_vector_of n) n' (H1 H2: n = n'),
cast h H1 = cast h H2.
Proof.
intros. apply val_inj; simpl. apply/matrixP. intros i j. rewrite !castmxE. unfold cast_ord. simpl.
rewrite (ordinal_eq (cast_ord_proof i (esym (f_equal (expn 2) H1))) (cast_ord_proof i (esym (f_equal (expn 2) H2)))).
reflexivity. reflexivity.
Qed.
(* Qubit vector combination. An m-qubit vector and an n-qubit vector can be combined (by taking their tensor
* product) into an m+n-qubit vector. *)
Lemma combineP:
forall m n q1 q2, \sum_(i < 2^(m+n)) `|(castmx (sym_eq (expnD 2 m n), (eq_S 0 0 (eqP (eq_refl 0)))%N) (vector q1 *t vector q2)) i 0| ^+ 2 == 1.
Proof.
intros m n q1 q2. apply/eqP.
replace (\sum_(i < 2^(m+n)) _) with
(\sum_(i < 2^m * 2^n) `|(vector q1 *t vector q2) i 0| ^+ 2).
transitivity (\sum_(i < 2^m*2^n) `|vector q1 (mxtens_unindex i).1 (mxtens_unindex (m:=1) (n:=1) 0).1| ^+ 2 * `|vector q2 (mxtens_unindex i).2 (mxtens_unindex (m:=1) (n:=1) 0).2| ^+ 2).
apply eq_bigr; intros i _; rewrite mxE. rewrite normrM. rewrite exprMn //.
destruct q1 as [q1 Hq1]; destruct q2 as [q2 Hq2].
rewrite -(mulr_sum (fun x => `|q1 x (mxtens_unindex (m:=1) (n:=1) 0).1| ^+ 2) (fun x => `|q2 x (mxtens_unindex (m:=1) (n:=1) 0).2| ^+ 2)).
rewrite sum_mul_dist. simpl.
(* This can probably be done in a much easier way, but you know... *)
replace (\sum_(j<2^n) `|q2 j _|^+2) with (1:R[i]).
rewrite (eq_bigr _ (fun P x => mulr1 _)).
replace (\sum_(i<2^m) `|q1 i _|^+2) with (1:R[i]). reflexivity.
rewrite -(eqP Hq1). apply eq_bigr. intros i _. replace (q1 i 0) with (q1 i (Ordinal (mxtens_index_proof1 (m:=1) (n:=1) 0))).
reflexivity. transitivity (q1 i (Ordinal (ltn0Sn 0))). replace (Ordinal (ltn0Sn 0)) with (Ordinal (mxtens_index_proof1 (m:=1) (n:=1) 0)).
reflexivity. apply/val_eqP. simpl. auto.
reflexivity.
rewrite -(eqP Hq2). apply eq_bigr. intros i _. replace (q2 i 0) with (q2 i (Ordinal (mxtens_index_proof2 (m:=1) (n:=1) 0))).
reflexivity. transitivity (q2 i (Ordinal (ltn0Sn 0))). replace (Ordinal (ltn0Sn 0)) with (Ordinal (mxtens_index_proof2 (m:=1) (n:=1) 0)).
reflexivity. apply/val_eqP. simpl. auto.
reflexivity.
apply sum_cast with (sym_eq (expnD 2 m n)). auto. intros. rewrite castmxE. rewrite cast_ordK. rewrite cast_ord_id. reflexivity.
Qed.
Canonical combine m n q1 q2 := (@QubitVector (m+n) _ (@combineP m n q1 q2)).
Lemma combine0q: forall n, left_id zero_qubit (@combine 0 n).
Proof.
intros n x; destruct x as [x Hx]; unfold combine.
apply val_inj. simpl. rewrite tens_scalar1mx. rewrite castmx_comp. apply/matrixP.
intros i j. rewrite !castmxE. simpl; f_equal; apply cast_ord_id.
Qed.
Lemma combineq0: forall n q, (@combine n 0 q zero_qubit) = (cast q (sym_eq (addn0 n))).
Proof.
intros n x; destruct x as [x Hx]; unfold cast; unfold combine.
apply val_inj; simpl. rewrite tens_mx_scalar. rewrite castmx_comp. apply/matrixP.
intros i j. rewrite !castmxE. simpl. rewrite scale1r. f_equal; unfold cast_ord; f_equal; apply eq_irrelevance.
Qed.
Lemma combineA: forall m n k (h: qubit_vector_of m) (h': qubit_vector_of n) (q: qubit_vector_of k) H,
cast (combine (combine h h') q) H = combine h (combine h' q).
Proof.
intros. apply val_inj; simpl. rewrite !castmx_comp. apply/matrixP. intros i j. rewrite !castmxE.
rewrite !mxE. rewrite !castmxE. rewrite !mxE. simpl. rewrite mulrA. f_equal. f_equal.
rewrite (ordinal_eq (mxtens_index_proof1 (cast_ord (esym (Logic.eq_sym (expnD 2 m n)))
(Ordinal
(mxtens_index_proof1
(cast_ord (esym (etrans (Logic.eq_sym (expnD 2 (m + n) k)) (f_equal (expn 2) H))) i)))))
(mxtens_index_proof1 (cast_ord (esym (Logic.eq_sym (expnD 2 m (n + k)))) i))).
rewrite (ordinal_eq
(@mxtens_index_proof1 1 1
(@cast_ord 1 1 (@esym nat 1 1 (eq_S 0 0 ((@eqP nat_eqType 0 0) (eqxx 0))))%N
(@Ordinal 1 (j %/ 1)
(@mxtens_index_proof1 1 1
(@cast_ord 1 1
(@esym nat 1 1
(@etrans nat 1 1 1 (eq_S 0 0 ((@eqP nat_eqType 0 0) (eqxx 0)))
(eq_S 0 0 ((@eqP nat_eqType 0 0) (eqxx 0)))))%N j)))))
(@mxtens_index_proof1 1 1 (@cast_ord 1 1 (@esym nat 1 1 (eq_S 0 0 ((@eqP nat_eqType 0 0) (eqxx 0))))%N j))).
reflexivity.
rewrite divn1 //.
simpl. rewrite -divnMA. rewrite (mulnC (2^k) (2^n))%N. rewrite (expnD 2 n k). reflexivity.
rewrite (ordinal_eq (mxtens_index_proof2
(cast_ord (esym (Logic.eq_sym (expnD 2 m n)))
(Ordinal
(mxtens_index_proof1
(cast_ord (esym (etrans (Logic.eq_sym (expnD 2 (m + n) k)) (f_equal (expn 2) H))) i)))))
(mxtens_index_proof1
(cast_ord (esym (Logic.eq_sym (expnD 2 n k)))
(Ordinal (mxtens_index_proof2 (cast_ord (esym (Logic.eq_sym (expnD 2 m (n + k)))) i)))))).
rewrite (ordinal_eq (@mxtens_index_proof2 1 1
(@cast_ord 1 1 (@esym nat 1 1 (eq_S 0 0 ((@eqP nat_eqType 0 0) (eqxx 0))))%N
(@Ordinal 1 (j %/ 1)
(@mxtens_index_proof1 1 1
(@cast_ord 1 1
(@esym nat 1 1
(@etrans nat 1 1 1 (eq_S 0 0 ((@eqP nat_eqType 0 0) (eqxx 0)))
(eq_S 0 0 ((@eqP nat_eqType 0 0) (eqxx 0)))))%N j)))))
(@mxtens_index_proof1 1 1
(@cast_ord 1 1 (@esym nat 1 1 (eq_S 0 0 ((@eqP nat_eqType 0 0) (eqxx 0))))%N
(@Ordinal 1 (j %% 1)
(@mxtens_index_proof2 1 1
(@cast_ord 1 1 (@esym nat 1 1 (eq_S 0 0 ((@eqP nat_eqType 0 0) (eqxx 0))))%N j)))))).
reflexivity.
simpl. rewrite !divn1 //.
simpl. rewrite (expnD 2 n k). rewrite !modn_def. case: edivnP => p r. case: edivnP => p' r'. simpl. intros.
rewrite e in e0. rewrite mulnA in e0. rewrite divnMDl in e0. symmetry. apply (blerp e0).
rewrite ltn_divLR. apply (implP i0). rewrite muln_gt0. apply <- andP. split.
rewrite expn_gt0. apply orP. left; auto.
rewrite expn_gt0. apply orP. left; auto.
rewrite expn_gt0. apply orP. left; auto.
apply (implP i1). rewrite expn_gt0. apply orP. left; auto.
rewrite expn_gt0. apply orP. left; auto.
rewrite (ordinal_eq (mxtens_index_proof2 (cast_ord (esym (etrans (Logic.eq_sym (expnD 2 (m + n) k)) (f_equal (expn 2) H))) i))
(mxtens_index_proof2
(cast_ord (esym (Logic.eq_sym (expnD 2 n k)))
(Ordinal (mxtens_index_proof2 (cast_ord (esym (Logic.eq_sym (expnD 2 m (n + k)))) i)))))).
rewrite (ordinal_eq (@mxtens_index_proof2 1 1
(@cast_ord 1 1
(@esym nat 1 1
(@etrans nat 1 1 1 (eq_S 0 0 ((@eqP nat_eqType 0 0) (eqxx 0)))
(eq_S 0 0 ((@eqP nat_eqType 0 0) (eqxx 0)))))%N j))
(@mxtens_index_proof2 1 1
(@cast_ord 1 1 (@esym nat 1 1 (eq_S 0 0 ((@eqP nat_eqType 0 0) (eqxx 0))))%N
(@Ordinal 1 (j %% 1)
(@mxtens_index_proof2 1 1
(@cast_ord 1 1 (@esym nat 1 1 (eq_S 0 0 ((@eqP nat_eqType 0 0) (eqxx 0))))%N j)))))).
reflexivity.
simpl. rewrite !modn1 //.
simpl. rewrite (expnD 2 n k). symmetry. apply modn_dvdm. apply dvdn_mull. apply dvdnn.
Qed.
Lemma blerp2: forall n k: nat, (k = 0 -> n = n + k)%N.
Proof.
intros. rewrite H. symmetry. apply addn0.
Qed.
Lemma gnarf: forall n k k', k = k'.+1 -> (n + 1 + k' = n + k)%N.
Proof.
intros. rewrite H. rewrite (addnS n k'). rewrite addnAC. rewrite addn1 //.
Qed.
Lemma znoits: forall k k', k = k'.+1 -> k.-1 = k'.
Proof.
intros. rewrite H. reflexivity.
Qed.
(* Combine a list of k 1-qubit vectors into one k-qubit vector. We use the 0-qubit vector as an initial value
here, as it is the neutral element of the tensor product. *)
Fixpoint combine_tuple_aux (n: nat) (q: qubit_vector_of n) (k: nat) (l: k .-tuple (qubit_vector_of 1)) { struct k }: (qubit_vector_of (n+k)) :=
(match k as m return (k = m) -> _ with
| 0 => fun H: (k = 0)%N =>
cast q (blerp2 n H)
| k'.+1 => fun H: k = k'.+1 =>
cast (combine_tuple_aux (combine q (thead (tcast H l))) (tcast (znoits H) (behead_tuple l))) (gnarf n H)
end) (Logic.eq_refl k).
Definition combine_tuple (k: nat) (l: k.-tuple (qubit_vector_of 1)): (qubit_vector_of k) :=
(combine_tuple_aux zero_qubit l).
Lemma combine_tuple_rec: forall (k: nat) (n: nat) (h: qubit_vector_of n) (t: k.-tuple (qubit_vector_of 1)),
combine_tuple_aux h t = combine h (combine_tuple t).
Proof.
intros. unfold combine_tuple. generalize n h; clear n h; induction k; intros n h;
[ simpl; rewrite !cast_id; rewrite combineq0; f_equal; apply eq_irrelevance
|
].
simpl. rewrite !cast_id. rewrite !tcast_id. generalize t; clear t; case/tupleP. intros h' t.
rewrite !theadE. rewrite behead_tupleE. rewrite combine0q.
rewrite IHk. rewrite IHk. rewrite combine0q. rewrite (IHk [tuple of t] (1%N) h').
rewrite -(combineA h h'). apply cast_irrelevance.
Qed.
(*Lemma combine_tupleE: forall k (l: k.-tuple (qubit_vector_of 1)) i,
vector (combine_tuple l) i 0 =
\prod_(n < k) (vector (tnth l n)) (if (select i n) then 1 else 0) 0. *)
(* Definition of decomposability. A qubit vector is decomposable if it can be written as the combination of
* two qubit vectors. It is maximally decomposable if it can be written as a combination of 1-qubit vectors. *)
Definition decomposable_aux (p: nat) (q: qubit_vector_of p) (n m: nat) (Heq: (n + m = p)%N) :=
exists (q1: qubit_vector_of n) (q2: qubit_vector_of m),
(cast (combine q1 q2) Heq) = q.
Definition decomposable (p: nat) (q: qubit_vector_of p) :=
exists n m Heq, (@decomposable_aux p q n m Heq).
Definition maximally_decomposable (n: nat) (q: qubit_vector_of n) :=
exists (l: n.-tuple (qubit_vector_of 1)), combine_tuple l = q.
(* Definition of entanglement. A qubit vector is entangled if there are two qubits b1 and b2 such that measuring
* b1 influences the probability distribution of measuring b2. It is maximally entangled if all qubits in the
* vector influence each other. It is disentangled if no qubits in the vector influence each other. *)
Definition disentangled_aux (n: nat) (b1 b2: 'I_n) (q: qubit_vector_of n) :=
prob_0 b1 (QubitVector (measure0_unitary b2 q)) = prob_0 b1 (QubitVector (measure1_unitary b2 q)) /\
prob_1 b1 (QubitVector (measure0_unitary b2 q)) = prob_1 b1 (QubitVector (measure1_unitary b2 q)).
Definition disentangled (n: nat) (q: qubit_vector_of n) :=
forall b1 b2, disentangled_aux b1 b2 q.
Definition maximally_entangled (n: nat) (q: qubit_vector_of n) :=
forall b1 b2, ~disentangled_aux b1 b2 q.
Lemma frob:
forall n q b, ~(\sum_(i < 2^n | ~~select i b) `|(vector q) i 0| ^+2 == 0 /\
\sum_(i < 2^n | select i b) `|(vector q) i 0| ^+ 2 == 0).
Proof.
intros. intro X. destruct X.
absurd ((GRing.one (ComplexField.complex_numDomainType R)) == 0 + 0).
intro. rewrite add0r in H1. rewrite oner_eq0 in H1. inversion H1.
rewrite -{1}(eqP H). rewrite -{2}(eqP H0).
rewrite sum_if_not. apply/eqP. symmetry. apply/eqP. apply (vector_is_unit q).
Qed.
(* Entanglement and decomposability are equivalent. *)
(* Theorem decdis n (q: qubit_vector_of n):
maximally_decomposable q -> disentangled q. *)