-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
291 lines (252 loc) · 12.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import argparse
import datetime
import numpy as np
import time
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import math
import sys
from pathlib import Path
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer
from timm.utils import NativeScaler, accuracy
import utils
import os
import random
import models
def get_args_parser():
parser = argparse.ArgumentParser('ARTran training script', add_help=False)
parser.add_argument('--data-path', default='', type=str, help='dataset path')
parser.add_argument('--batch-size', default=256, type=int)
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--fold', default=1, type=int)
parser.add_argument('--unscale-lr', action='store_true')
parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# Model parameters
parser.add_argument('--model', default='ARTran', type=str, metavar='MODEL', help='Name of model to train')
parser.add_argument('--hw_shape', dest='cord', type=tuple)
parser.add_argument('--kernel_size', dest='cord', type=tuple)
parser.add_argument('--stride', dest='cord', type=tuple)
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
class CELoss(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, pred, target):
output = torch.log(pred)
return F.nll_loss(output, target)
def main(args):
utils.init_distributed_mode(args)
if args.distillation_type != 'none' and args.finetune and not args.eval:
raise NotImplementedError("Finetuning with distillation not yet supported")
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
dataset_train = read_HM.HMDataset(
data_root=args.data_root,
fold=args.fold,
isTrain=True,
adjustable=True,
hw_shape=args.hw_shape,
)
dataset_val = read_HM.HMDataset(
data_root=args.data_root,
fold=args.fold,
isTrain=True,
hw_shape=args.hw_shape,
shift=args.shift
)
if args.distributed: # args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=100,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
print(f"Creating model: {args.model}")
model = models.AdjustableRobustTransformer(
num_classes=args.nb_classes,
hw_shape=args.hw_shape,
in_chans=3,
kernel_size=args.kernel_size,
stride=args.stride
)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'number of params: {n_parameters}')
if not args.unscale_lr:
linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0
args.lr = linear_scaled_lr
optimizer = create_optimizer(args, model_without_ddp)
loss_scaler = NativeScaler()
lr_scheduler, _ = create_scheduler(args, optimizer)
output_dir = Path(args.output_dir)
criterion = CELoss()
max_accuracy = 0.0
print_freq = 10
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
model.train()
batch = 0
for samples in data_loader_train:
image = samples['image'].to(device, non_blocking=True)
label = samples['clsSEBaseline'].to(device, non_blocking=True)
label_shift = samples['clsSEShift'].to(device, non_blocking=True)
shift = samples['shift'].to(device, non_blocking=True)
with torch.cuda.amp.autocast():
outputs = model(image, shift=shift)
loss_class_b = criterion(outputs['post_noise_benchmark'], label)
loss_class_s = criterion(outputs['post_noise_shift'], label_shift)
loss_volume = outputs['volume']
loss = (loss_class_b + loss_class_s) / 2 + loss_volume
acc_benchmark = accuracy(outputs['post_noise_benchmark'], label)
acc_shift = accuracy(outputs['post_noise_shift'], label_shift)
if not math.isfinite(loss.item()):
print("Loss is {}, stopping training".format(loss.item()))
sys.exit(1)
optimizer.zero_grad()
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss_scaler(loss, optimizer, clip_grad=args.clip_grad,
parameters=model.parameters(), create_graph=is_second_order)
torch.cuda.synchronize()
if batch % print_freq == 0 and dist.get_rank() == 0:
print(f'Epoch: {epoch}, Batch: {batch}/{len(data_loader_train)}, Acc: {acc_benchmark[0].item():.3f}%(Benchmark)/{acc_shift[0].item():.3f}%(Shift), Loss: {loss:.5f}, LR: {optimizer.param_groups[0]["lr"]:.5f}')
batch += 1
lr_scheduler.step(epoch)
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'scaler': loss_scaler.state_dict(),
'args': args,
}, checkpoint_path)
model.eval()
batch = 0
total_acc = 0
with torch.no_grad():
for samples in data_loader_val:
image = samples['image'].to(device, non_blocking=True)
label = samples['clsSEBaseline'].to(device, non_blocking=True)
label_shift = samples['clsSEShift'].to(device, non_blocking=True)
shift = samples['shift'].to(device, non_blocking=True)
cube_id = samples['cube_id'][0].item()
with torch.cuda.amp.autocast():
outputs = model(image, shift=shift)
post_benchmark = outputs['post_clean_benchmark']
post_shift = outputs['post_clean_shift']
acc_benchmark = accuracy(post_benchmark, label)
acc_benchmark_cube = 100 if acc_benchmark[0].item() >= 50 else 0
acc_shift = accuracy(post_shift, label_shift)
acc_shift_cube = 100 if acc_shift[0].item() >= 50 else 0
total_acc += acc_benchmark_cube
if batch % print_freq == 0 and dist.get_rank() == 0:
print(
f'Test: {cube_id}, Batch: {batch}/{len(data_loader_train)}, Acc: {acc_benchmark_cube[0].item():.3f}%(Benchmark)/{acc_shift_cube[0].item():.3f}%(Shift)')
batch += 1
total_acc = total_acc / (len(data_loader_train) // 100)
if max_accuracy < total_acc:
max_accuracy = total_acc
if dist.get_rank() == 0:
print(f"Epoch: {epoch}, Accuracy on {len(dataset_val) // 100} test cubes: {total_acc:.2f}%")
print(f'Max accuracy: {max_accuracy:.2f}%')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
if dist.get_rank() == 0:
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('ARTran training', parents=[get_args_parser()])
args = parser.parse_args()
main(args)