Note: 我们的 TensorFlow 社区翻译了这些文档。因为社区翻译是尽力而为, 所以无法保证它们是最准确的,并且反映了最新的 官方英文文档。如果您有改进此翻译的建议, 请提交 pull request 到 tensorflow/docs GitHub 仓库。要志愿地撰写或者审核译文,请加入 [email protected] Google Group。
tf.distribute.Strategy
API 提供了一个抽象的 API ,用于跨多个处理单元(processing units)分布式训练。它的目的是允许用户使用现有模型和训练代码,只需要很少的修改,就可以启用分布式训练。
本教程使用 tf.distribute.MirroredStrategy
,这是在一台计算机上的多 GPU(单机多卡)进行同时训练的图形内复制(in-graph replication)。事实上,它会将所有模型的变量复制到每个处理器上,然后,通过使用 all-reduce 去整合所有处理器的梯度(gradients),并将整合的结果应用于所有副本之中。
MirroredStategy
是 tensorflow 中可用的几种分发策略之一。 您可以在 分发策略指南 中阅读更多分发策略。
这个例子使用 tf.keras
API 去构建和训练模型。 关于自定义训练模型,请参阅 tf.distribute.Strategy with training loops 教程。
# 导入 TensorFlow 和 TensorFlow 数据集
import tensorflow_datasets as tfds
import tensorflow as tf
tfds.disable_progress_bar()
import os
print(tf.__version__)
2.3.0
下载 MNIST 数据集并从 TensorFlow Datasets 加载。 这会返回 tf.data
格式的数据集。
将 with_info
设置为 True
会包含整个数据集的元数据,其中这些数据集将保存在 info
中。 除此之外,该元数据对象包括训练和测试示例的数量。
datasets, info = tfds.load(name='mnist', with_info=True, as_supervised=True)
mnist_train, mnist_test = datasets['train'], datasets['test']
创建一个 MirroredStrategy
对象。这将处理分配策略,并提供一个上下文管理器(tf.distribute.MirroredStrategy.scope
)来构建你的模型。
strategy = tf.distribute.MirroredStrategy()
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
print('Number of devices: {}'.format(strategy.num_replicas_in_sync))
Number of devices: 1
在训练具有多个 GPU 的模型时,您可以通过增加批量大小(batch size)来有效地使用额外的计算能力。通常来说,使用适合 GPU 内存的最大批量大小(batch size),并相应地调整学习速率。
# 您还可以执行 info.splits.total_num_examples 来获取总数
# 数据集中的样例数量。
num_train_examples = info.splits['train'].num_examples
num_test_examples = info.splits['test'].num_examples
BUFFER_SIZE = 10000
BATCH_SIZE_PER_REPLICA = 64
BATCH_SIZE = BATCH_SIZE_PER_REPLICA * strategy.num_replicas_in_sync
0-255 的像素值, 必须标准化到 0-1 范围。在函数中定义标准化。
def scale(image, label):
image = tf.cast(image, tf.float32)
image /= 255
return image, label
将此功能应用于训练和测试数据,随机打乱训练数据,并批量训练。 请注意,我们还保留了训练数据的内存缓存以提高性能。
train_dataset = mnist_train.map(scale).cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
eval_dataset = mnist_test.map(scale).batch(BATCH_SIZE)
在 strategy.scope
的上下文中创建和编译 Keras 模型。
with strategy.scope():
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(),
metrics=['accuracy'])
这里使用的回调(callbacks)是:
- TensorBoard: 此回调(callbacks)为 TensorBoard 写入日志,允许您可视化图形。
- Model Checkpoint: 此回调(callbacks)在每个 epoch 后保存模型。
- Learning Rate Scheduler: 使用此回调(callbacks),您可以安排学习率在每个 epoch/batch 之后更改。
为了便于说明,添加打印回调(callbacks)以在笔记本中显示学习率。
# 定义检查点(checkpoint)目录以存储检查点(checkpoints)
checkpoint_dir = './training_checkpoints'
# 检查点(checkpoint)文件的名称
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")
# 衰减学习率的函数。
# 您可以定义所需的任何衰减函数。
def decay(epoch):
if epoch < 3:
return 1e-3
elif epoch >= 3 and epoch < 7:
return 1e-4
else:
return 1e-5
# 在每个 epoch 结束时打印 LR 的回调(callbacks)。
class PrintLR(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
print('\nLearning rate for epoch {} is {}'.format(epoch + 1,
model.optimizer.lr.numpy()))
callbacks = [
tf.keras.callbacks.TensorBoard(log_dir='./logs'),
tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix,
save_weights_only=True),
tf.keras.callbacks.LearningRateScheduler(decay),
PrintLR()
]
在该部分,以普通的方式训练模型,在模型上调用 fit
并传入在教程开始时创建的数据集。 无论您是否分布式训练,此步骤都是相同的。
model.fit(train_dataset, epochs=12, callbacks=callbacks)
Epoch 1/12
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/data/ops/multi_device_iterator_ops.py:601: get_next_as_optional (from tensorflow.python.data.ops.iterator_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Iterator.get_next_as_optional()` instead.
Warning:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/data/ops/multi_device_iterator_ops.py:601: get_next_as_optional (from tensorflow.python.data.ops.iterator_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Iterator.get_next_as_optional()` instead.
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
1/938 [..............................] - ETA: 0s - loss: 2.3194 - accuracy: 0.0938WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and will be removed after 2020-07-01.
Instructions for updating:
use `tf.profiler.experimental.stop` instead.
Warning:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and will be removed after 2020-07-01.
Instructions for updating:
use `tf.profiler.experimental.stop` instead.
Warning:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0046s vs `on_train_batch_end` time: 0.0296s). Check your callbacks.
Warning:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0046s vs `on_train_batch_end` time: 0.0296s). Check your callbacks.
932/938 [============================>.] - ETA: 0s - loss: 0.2055 - accuracy: 0.9422
Learning rate for epoch 1 is 0.0010000000474974513
938/938 [==============================] - 4s 5ms/step - loss: 0.2049 - accuracy: 0.9424
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
Epoch 2/12
922/938 [============================>.] - ETA: 0s - loss: 0.0681 - accuracy: 0.9797
Learning rate for epoch 2 is 0.0010000000474974513
938/938 [==============================] - 3s 3ms/step - loss: 0.0680 - accuracy: 0.9798
Epoch 3/12
930/938 [============================>.] - ETA: 0s - loss: 0.0484 - accuracy: 0.9855
Learning rate for epoch 3 is 0.0010000000474974513
938/938 [==============================] - 3s 3ms/step - loss: 0.0484 - accuracy: 0.9855
Epoch 4/12
920/938 [============================>.] - ETA: 0s - loss: 0.0277 - accuracy: 0.9925
Learning rate for epoch 4 is 9.999999747378752e-05
938/938 [==============================] - 3s 3ms/step - loss: 0.0276 - accuracy: 0.9926
Epoch 5/12
931/938 [============================>.] - ETA: 0s - loss: 0.0248 - accuracy: 0.9935
Learning rate for epoch 5 is 9.999999747378752e-05
938/938 [==============================] - 3s 3ms/step - loss: 0.0247 - accuracy: 0.9936
Epoch 6/12
931/938 [============================>.] - ETA: 0s - loss: 0.0231 - accuracy: 0.9938
Learning rate for epoch 6 is 9.999999747378752e-05
938/938 [==============================] - 3s 3ms/step - loss: 0.0230 - accuracy: 0.9938
Epoch 7/12
936/938 [============================>.] - ETA: 0s - loss: 0.0217 - accuracy: 0.9941
Learning rate for epoch 7 is 9.999999747378752e-05
938/938 [==============================] - 3s 3ms/step - loss: 0.0216 - accuracy: 0.9941
Epoch 8/12
932/938 [============================>.] - ETA: 0s - loss: 0.0189 - accuracy: 0.9952
Learning rate for epoch 8 is 9.999999747378752e-06
938/938 [==============================] - 3s 3ms/step - loss: 0.0189 - accuracy: 0.9952
Epoch 9/12
932/938 [============================>.] - ETA: 0s - loss: 0.0188 - accuracy: 0.9953
Learning rate for epoch 9 is 9.999999747378752e-06
938/938 [==============================] - 3s 3ms/step - loss: 0.0187 - accuracy: 0.9953
Epoch 10/12
932/938 [============================>.] - ETA: 0s - loss: 0.0185 - accuracy: 0.9953
Learning rate for epoch 10 is 9.999999747378752e-06
938/938 [==============================] - 3s 3ms/step - loss: 0.0185 - accuracy: 0.9953
Epoch 11/12
934/938 [============================>.] - ETA: 0s - loss: 0.0183 - accuracy: 0.9953
Learning rate for epoch 11 is 9.999999747378752e-06
938/938 [==============================] - 3s 3ms/step - loss: 0.0184 - accuracy: 0.9953
Epoch 12/12
931/938 [============================>.] - ETA: 0s - loss: 0.0183 - accuracy: 0.9954
Learning rate for epoch 12 is 9.999999747378752e-06
938/938 [==============================] - 3s 3ms/step - loss: 0.0182 - accuracy: 0.9955
<tensorflow.python.keras.callbacks.History at 0x7fe470118978>
如下所示,检查点(checkpoint)将被保存。
# 检查检查点(checkpoint)目录
ls {checkpoint_dir}
checkpoint ckpt_4.data-00000-of-00001
ckpt_1.data-00000-of-00001 ckpt_4.index
ckpt_1.index ckpt_5.data-00000-of-00001
ckpt_10.data-00000-of-00001 ckpt_5.index
ckpt_10.index ckpt_6.data-00000-of-00001
ckpt_11.data-00000-of-00001 ckpt_6.index
ckpt_11.index ckpt_7.data-00000-of-00001
ckpt_12.data-00000-of-00001 ckpt_7.index
ckpt_12.index ckpt_8.data-00000-of-00001
ckpt_2.data-00000-of-00001 ckpt_8.index
ckpt_2.index ckpt_9.data-00000-of-00001
ckpt_3.data-00000-of-00001 ckpt_9.index
ckpt_3.index
要查看模型的执行方式,请加载最新的检查点(checkpoint)并在测试数据上调用 evaluate
。
使用适当的数据集调用 evaluate
。
model.load_weights(tf.train.latest_checkpoint(checkpoint_dir))
eval_loss, eval_acc = model.evaluate(eval_dataset)
print('Eval loss: {}, Eval Accuracy: {}'.format(eval_loss, eval_acc))
157/157 [==============================] - 1s 6ms/step - loss: 0.0399 - accuracy: 0.9861
Eval loss: 0.03988004848361015, Eval Accuracy: 0.9861000180244446
要查看输出,您可以在终端下载并查看 TensorBoard 日志。
$ tensorboard --logdir=path/to/log-directory
ls -sh ./logs
total 4.0K
4.0K train
将图形和变量导出为与平台无关的 SavedModel 格式。 保存模型后,可以在有或没有 scope 的情况下加载模型。
path = 'saved_model/'
model.save(path, save_format='tf')
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.
Warning:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.
Warning:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.
Warning:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.
INFO:tensorflow:Assets written to: saved_model/assets
INFO:tensorflow:Assets written to: saved_model/assets
在无需 strategy.scope
加载模型。
unreplicated_model = tf.keras.models.load_model(path)
unreplicated_model.compile(
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(),
metrics=['accuracy'])
eval_loss, eval_acc = unreplicated_model.evaluate(eval_dataset)
print('Eval loss: {}, Eval Accuracy: {}'.format(eval_loss, eval_acc))
157/157 [==============================] - 1s 3ms/step - loss: 0.0399 - accuracy: 0.9861
Eval loss: 0.03988004848361015, Eval Accuracy: 0.9861000180244446
在含 strategy.scope
加载模型。
with strategy.scope():
replicated_model = tf.keras.models.load_model(path)
replicated_model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(),
metrics=['accuracy'])
eval_loss, eval_acc = replicated_model.evaluate(eval_dataset)
print ('Eval loss: {}, Eval Accuracy: {}'.format(eval_loss, eval_acc))
157/157 [==============================] - 1s 5ms/step - loss: 0.0399 - accuracy: 0.9861
Eval loss: 0.03988004848361015, Eval Accuracy: 0.9861000180244446
以下是使用 keras fit/compile 分布式策略的一些示例:
- 使用
tf.distribute.MirroredStrategy
训练 Transformer 的示例。 - 使用
tf.distribute.MirroredStrategy
训练 NCF 的示例。
分布式策略指南中列出的更多示例
- 阅读分布式策略指南。
- 阅读自定义训练的分布式训练教程。
注意:tf.distribute.Strategy
正在积极开发中,我们将在不久的将来添加更多示例和教程。欢迎您进行尝试。我们欢迎您通过 GitHub 上的 issue 提供反馈。