-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathfastsparse.py
148 lines (124 loc) · 4.53 KB
/
fastsparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy as np
import os
from ctypes import *
import time
class Input(Structure):
_fields_ = [
("AB_vals",c_void_p),
("AB_bias",c_void_p),
("BC",c_void_p),
("AC",c_void_p),
("start",c_int32),
("end",c_int32)
]
class SpMM:
# takes in a numpy sparse matrix in the dense array format with 0s, and the C_dimension of the dense matrix
def __init__(self, matrix, C_dim, bias=None):
self.A_dim = matrix.shape[0]
self.B_dim = matrix.shape[1]
self.matrix = matrix
self.C_dim = C_dim
self.bias = bias
if self.bias is not None:
assert len(self.bias) == self.A_dim
def compile(self,name = "spmm", val_name = "vals.npy", bias_name = "bias.npy", AT = 6, CT = 2, B_blocks = 1, C_blocks = 1, no_relu=True,epi="NONE"):
import code_gen_cpu
if not "avx2" in open("/proc/cpuinfo","r").read():
print("We need at least AVX2.")
raise Exception
if "avx512" in open("/proc/cpuinfo","r").read():
code_gen_cpu.AVX512 = True
code_gen_cpu.VEC = 16
else:
code_gen_cpu.AVX512 = False
code_gen_cpu.VEC = 8
code_gen_cpu.FUNC_NAME = name
code_gen_cpu.EPI = epi
code_gen_cpu.IN_FORMAT = "NCHW"
code_gen_cpu.OUT_FORMAT = "NCHW"
code_gen_cpu.GY = 1
code_gen_cpu.FUSE_END = False
code_gen_cpu.NO_RELU = no_relu
code_gen_cpu.A_dim = self.A_dim
code_gen_cpu.B_dim = self.B_dim
code_gen_cpu.C_dim = self.C_dim
code_gen_cpu.AT = AT
code_gen_cpu.CT = CT
code_gen_cpu.B_blocks = B_blocks
code_gen_cpu.C_blocks = C_blocks
code_gen_cpu.outfile = "out.cpp"
code_gen_cpu.outfile_asm = "out.s"
code_gen_cpu.bias = self.bias
assert self.C_dim % C_blocks == 0
code_gen_cpu.TSZ = self.C_dim // C_blocks if self.C_dim % C_blocks == 0 else self.C_dim // C_blocks + 1
code_gen_cpu.X86 = True
code_gen_cpu.ARM = False
NRS = False
BA = self.matrix.transpose()
#print(BA.shape)
BA = BA.squeeze()
code_gen_cpu.AB_vals = []
code_gen_cpu.A_idx = []
code_gen_cpu.B_idx = []
code_gen_cpu.AB_block_offs = [0]
#global off
code_gen_cpu.off = 0
"""
We are going to redo BA here to remove some empty rows
"""
nnz_cols = np.unique(np.where(BA)[1])
code_gen_cpu.mapping = {i : nnz_cols[i] for i in range(len(nnz_cols))}
#print(mapping)
BA = BA[:,nnz_cols]
code_gen_cpu.A_dim = len(nnz_cols)
if code_gen_cpu.A_dim % AT == 0:
A_blocks = code_gen_cpu.A_dim // AT
else:
A_blocks = code_gen_cpu.A_dim // AT + 1
code_gen_cpu.gencode(BA,self.C_dim,A_blocks,C_blocks,name="bump")
self.AB_vals = np.array(code_gen_cpu.AB_vals)
np.save(val_name,np.array(self.AB_vals))
if self.bias is not None:
np.save(bias_name,np.array(self.bias))
else:
self.bias = np.ones((self.A_dim))
#np.save(bias_name,np.array(self.bias))
os.system("gcc -c out.s")
os.system("ar rvs " + name + ".a out.o >/dev/null 2>&1")
os.system("gcc -shared out.s -o " + name + ".so ")
os.system("rm out.o out.s out.cpp")
self.libc = CDLL(name + ".so")
def load(self,sl_name, vec_name, bias_name = None):
self.libc = CDLL(sl_name)
self.AB_vals = np.load(vec_name)
assert self.AB_vals.dtype == np.float32
if bias_name:
self.bias = np.load(bias_name)
else:
# we will not be using the values in the kernel anyways
self.bias = np.ones((self.A_dim))
assert len(self.bias) == self.A_dim
def run(self,BC):
self.AC = np.empty((self.A_dim,self.C_dim),dtype=np.float32)
w = self.AC.ctypes.data
z = BC.ctypes.data
x = self.AB_vals.ctypes.data
AB_bias = self.bias
y = AB_bias.ctypes.data
self.arg = pointer(Input(x,y,z,w,0,1))
self.libc._spmm(self.arg)
return self.AC
def ref_run(self,BC):
return np.dot(self.matrix,BC).astype(np.float32)
a = np.load("matrix.npy")
b = SpMM(a,128)
b.compile()
test_input = np.random.normal(size=(128,128)).astype(np.float32)
b.run(test_input)
reference = b.ref_run(test_input)
assert np.abs(np.sum(np.sum(b.AC-reference))) < 0.1
#
start = time.time()
for i in range(1000):
b.run(test_input)
print((time.time()-start) * 1000)