-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathmodel.py
416 lines (340 loc) · 19.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import torch
from torch import nn
import transformers
from transformers.utils import logging
from transformers import PreTrainedModel, Blip2QFormerModel, AutoModelForCausalLM
from transformers import CLIPTextConfig, CLIPTextModel
from transformers.modeling_outputs import BaseModelOutputWithPooling
from transformers.models.clip.modeling_clip import CLIPTextTransformer
import sys
from einops import rearrange
from configuration import WorldModelConfig
from typing import Optional, Tuple, Union, List, Dict
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast, CLIPTokenizer
from ChatUniVi.constants import DEFAULT_IMAGE_TOKEN
from ChatUniVi.model import ChatUniViLlamaForCausalLM, ChatUniViConfig
sys.path.append('./DynamiCrafter')
from DynamiCrafter.scripts.evaluation.inference import load_model_checkpoint, instantiate_from_config
from DynamiCrafter.lvdm.models.samplers.ddim import DDIMSampler
from DynamiCrafter.lvdm.models.samplers.ddim_multiplecond import DDIMSampler as DDIMSampler_multicond
from omegaconf import OmegaConf
from einops import repeat
from transformers import logging
logging.set_verbosity_error()
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
_make_causal_mask = AttentionMaskConverter._make_causal_mask
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
IMAGE_PREFIX_TOKEN = "[IMG_P]"
logger = logging.get_logger(__name__)
def freeze_sub_models(function):
def wrapper(*args, **kwargs):
model = function(*args, **kwargs)
if model.config.freeze_video_model:
for param in model.video_model.parameters():
param.requires_grad = False
if model.config.use_diffusion_text_encoder and model.config.freeze_diffusion_text_encoder:
for param in model.diffusion_text_encoder.parameters():
param.requires_grad = False
if model.config.use_image_callbacks:
for param in model.diffusion_original_text_encoder.parameters():
param.requires_grad = False
if model.config.freeze_diffusion_qformer:
for param in model.diffusion_qformer.parameters():
param.requires_grad = False
for param in model.diffusion_qformer_proj.parameters():
param.requires_grad = False
model.diffusion_query_tokens.requires_grad = False
for param in model.diffusion_proj.parameters():
param.requires_grad = False
return model
return wrapper
class WorldModel(PreTrainedModel):
config_class = WorldModelConfig
sub_models = ['video_model']
supports_gradient_checkpointing = True
_supports_flash_attn_2 = True
def __init__(self, config: WorldModelConfig):
super().__init__(config)
if config.use_image_prefix:
self.image_prefix = nn.Linear(config.video_model_config.hidden_size, config.image_prefix_length, bias=False)
if config.use_flash_attn:
video_model_config = self._check_and_enable_flash_attn_2(config=config.video_model_config)
else:
video_model_config = config.video_model_config
video_model_config._flash_attn_2_enabled = False
if config.use_image_tokenizer:
self.image_embeddings = nn.Embedding(config.image_vocab_size, config.video_model_config.hidden_size)
self.diffusion_qformer_proj = nn.Linear(config.video_model_config.hidden_size, config.diffusion_qformer_config.hidden_size)
self.diffusion_qformer = Blip2QFormerModel(config.diffusion_qformer_config)
self.diffusion_query_tokens = nn.Parameter(torch.zeros(config.diffusion_text_encoder_config.max_position_embeddings, config.diffusion_qformer_config.hidden_size))
self.diffusion_proj = nn.Linear(config.diffusion_qformer_config.hidden_size, config.diffusion_proj_out_dim)
if config.use_image_callbacks:
self.diffusion_original_text_encoder = CLIPTextModel.from_pretrained(config.diffusion_model_name_or_path, subfolder="text_encoder")
self.diffusion_tokenizer = CLIPTokenizer.from_pretrained(config.diffusion_model_name_or_path,subfolder='tokenizer')
if config.use_diffusion_text_encoder:
self.diffusion_text_encoder = CLIPTextEmbeddingModel(config.diffusion_text_encoder_config)
self.post_init()
self.video_model = AutoModelForCausalLM.from_pretrained(config.video_model_name_or_path, config=video_model_config)
for module in self.video_model.modules():
module._is_hf_initialized = True
if not config.do_alignment:
model_config = OmegaConf.load(config.dynamicrafter)
model_config = model_config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint'] = False
self.diffusion_model = instantiate_from_config(model_config)
self.diffusion_model.perframe_ae = True
# load_model_checkpoint(self.diffusion_model, config.dynamicrafter_ckpt)
for module in self.diffusion_model.modules():
module._is_hf_initialized = True
if config.use_image_tokenizer:
self.image_embeddings.weight.data.normal_(mean=0.0, std=0.5)
@classmethod
@freeze_sub_models
def from_pretrained(cls, *args, **kwargs):
return super(WorldModel, cls).from_pretrained(*args, **kwargs)
def get_diffusion_conditioning(
self,
input_ids: torch.FloatTensor,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = True,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
diffusion_tgt_mask: Optional[torch.LongTensor] = None,
):
# print(f'11 normal {pixel_values.shape=}', flush=True)
# Copy and modify from ChatUniVi forward function ------------------------------------------------------------------------------------------------------------------
video_model = self.video_model
output_attentions = output_attentions if output_attentions is not None else video_model.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else video_model.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else video_model.config.use_return_dict
# Use labels to keep track of the location of image prefix tokens since image features will change the length of the sequence
image_prefix_token_id = self.video_model.config.vocab_size + 1 # ugly hardcode here
labels = input_ids.clone()
input_ids[input_ids.eq(image_prefix_token_id)] = 0
input_ids, attention_mask, past_key_values, inputs_embeds, labels = video_model.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, None, labels, pixel_values)
# print('11 normal', flush=True)
if self.config.use_image_prefix:
bs, seq_len = labels.shape
labels = labels.reshape(-1)
image_prefix_mask = labels.eq(image_prefix_token_id)
inputs_embeds = inputs_embeds.reshape(bs * seq_len, -1)
image_num = image_prefix_mask.sum().item() / self.config.image_prefix_length
assert int(image_num) == image_num
image_prefix_embeddings = self.image_prefix.weight.repeat(int(image_num), 1)
inputs_embeds[image_prefix_mask] = image_prefix_embeddings
inputs_embeds = inputs_embeds.reshape(bs, seq_len, -1)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
# print(f'12 normal {inputs_embeds.shape=}', flush=True)
outputs = video_model.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
# print(f'13 normal {outputs[0].shape}', flush=True)
output_hidden_states = outputs[0]
#--------------------------------------------------------------------------------------------------------------------------------------------------------------------
output_hidden_states = output_hidden_states.reshape(bs * seq_len, -1)
image_outputs_embeds = output_hidden_states[image_prefix_mask][diffusion_tgt_mask]
diffusion_loss = None
img_feat_num = self.config.image_prefix_length # if self.config.use_image_prefix else self.config.num_query_tokens
diffusion_conditioning = image_outputs_embeds.view(-1, img_feat_num, self.config.video_model_config.hidden_size)
diffusion_conditioning = self.diffusion_qformer_proj(diffusion_conditioning)
diffusion_query_tokens = self.diffusion_query_tokens.expand(diffusion_conditioning.shape[0], -1, -1)
diffusion_conditioning = self.diffusion_qformer(
query_embeds=diffusion_query_tokens,
encoder_hidden_states=diffusion_conditioning,
)[0]
diffusion_conditioning = self.diffusion_proj(diffusion_conditioning)
return diffusion_conditioning
@staticmethod
def get_latent_z(model, videos):
b, c, t, h, w = videos.shape
x = rearrange(videos, 'b c t h w -> (b t) c h w')
z = model.encode_first_stage(x)
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
if t == 1:
zero_pad = repeat(torch.zeros_like(z), 'b c t h w -> b c (repeat t) h w', repeat=3)
z = torch.cat([z, zero_pad], dim=2)
z = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=4)
return z
def image_guided_synthesis(self, diffusion_conditioning, videos, diffusion_cond_image, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1., \
unconditional_guidance_scale=1.0, cfg_img=None, fs=None, multiple_cond_cfg=False, loop=False, gfi=False, timestep_spacing='uniform', guidance_rescale=0.0, **kwargs):
ddim_sampler = DDIMSampler(self.diffusion_model) if not multiple_cond_cfg else DDIMSampler_multicond(self.diffusion_model)
batch_size = noise_shape[0]
fs = torch.tensor([fs] * batch_size, dtype=torch.long, device=self.diffusion_model.device)
# img = videos[:,:,0] #bchw
img = diffusion_cond_image
img_emb = self.diffusion_model.embedder(img) ## blc
img_emb = self.diffusion_model.image_proj_model(img_emb)
# cond_emb = self.diffusion_model.get_learned_conditioning(prompts)
cond_emb = diffusion_conditioning
cond = {"c_crossattn": [torch.cat([cond_emb,img_emb], dim=1)]}
if self.diffusion_model.model.conditioning_key == 'hybrid':
z = self.get_latent_z(self.diffusion_model, videos) # b c t h w
img_cat_cond = z
cond["c_concat"] = [img_cat_cond] # b c 1 h w
if unconditional_guidance_scale != 1.0:
if self.diffusion_model.uncond_type == "empty_seq":
prompts = batch_size * [""]
uc_emb = self.diffusion_model.get_learned_conditioning(prompts)
elif self.diffusion_model.uncond_type == "zero_embed":
uc_emb = torch.zeros_like(cond_emb)
uc_img_emb = self.diffusion_model.embedder(torch.zeros_like(img)) ## b l c
uc_img_emb = self.diffusion_model.image_proj_model(uc_img_emb)
uc = {"c_crossattn": [torch.cat([uc_emb,uc_img_emb],dim=1)]}
if self.diffusion_model.model.conditioning_key == 'hybrid':
uc["c_concat"] = [img_cat_cond]
else:
uc = None
## we need one more unconditioning image=yes, text=""
if multiple_cond_cfg and cfg_img != 1.0:
uc_2 = {"c_crossattn": [torch.cat([uc_emb,img_emb],dim=1)]}
if self.diffusion_model.model.conditioning_key == 'hybrid':
uc_2["c_concat"] = [img_cat_cond]
kwargs.update({"unconditional_conditioning_img_nonetext": uc_2})
else:
kwargs.update({"unconditional_conditioning_img_nonetext": None})
z0 = None
cond_mask = None
batch_variants = []
for _ in range(n_samples):
if z0 is not None:
cond_z0 = z0.clone()
kwargs.update({"clean_cond": True})
else:
cond_z0 = None
if ddim_sampler is not None:
samples, _ = ddim_sampler.sample(S=ddim_steps,
conditioning=cond,
batch_size=batch_size,
shape=noise_shape[1:],
verbose=True,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc,
eta=ddim_eta,
cfg_img=cfg_img,
mask=cond_mask,
x0=cond_z0,
fs=fs,
timestep_spacing=timestep_spacing,
guidance_rescale=guidance_rescale,
precision=diffusion_conditioning.dtype,
**kwargs
)
## reconstruct from latent to pixel space
batch_images = self.diffusion_model.decode_first_stage(samples)
batch_variants.append(batch_images)
## variants, batch, c, t, h, w
batch_variants = torch.stack(batch_variants)
return batch_variants.permute(1, 0, 2, 3, 4, 5)
@torch.no_grad()
def generate(
self,
input_ids: torch.FloatTensor,
pixel_values: torch.FloatTensor = None,
diffusion_pixel_values: torch.FloatTensor = None,
diffusion_cond_image: torch.FloatTensor = None,
attention_mask: Optional[torch.LongTensor] = None,
tokenizer: Optional[transformers.PreTrainedTokenizer] = None,
**generate_kwargs, # max_new_tokens, guidance_scale
):
assert input_ids.size(0) == 1, "Currently only support batch size 1"
past_key_values = None
output_sequence = input_ids
gen_images = []
img_feat_num = self.config.image_prefix_length if self.config.use_image_prefix else self.config.num_query_tokens
assert input_ids[0][-1] == tokenizer.image_prefix_token_id
diffusion_conditioning = self.get_diffusion_conditioning(input_ids, pixel_values, attention_mask, True, None, None)
diffusion_conditioning = diffusion_conditioning[-1:] # Only generate last video
h, w = diffusion_pixel_values.shape[-2:]
samples = self.image_guided_synthesis(diffusion_conditioning=diffusion_conditioning,
videos=diffusion_pixel_values[None, ...],
diffusion_cond_image=diffusion_cond_image,
noise_shape=[1, 4, self.diffusion_model.temporal_length, h//8, w//8],
**generate_kwargs)
return samples
class CLIPTextEmbeddingTransformer(CLIPTextTransformer):
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None:
# raise ValueError("You have to specify input_ids")
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
else:
assert inputs_embeds is not None
input_shape = inputs_embeds.size()[:-1]
hidden_states = inputs_embeds
# CLIP's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
causal_attention_mask = _make_causal_mask(input_shape, hidden_states.dtype, device=hidden_states.device)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.final_layer_norm(last_hidden_state)
if not return_dict:
return (last_hidden_state) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class CLIPTextEmbeddingModel(CLIPTextModel):
def __init__(self, config: CLIPTextConfig):
super().__init__(config)
self.text_model = CLIPTextEmbeddingTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return self.text_model(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)