-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathevaluate.py
41 lines (34 loc) · 1.78 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import pandas as pd
import numpy as np
import os
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error, mean_squared_error
models = ('HLR', 'HLR-lex', 'DHP', 'leitner', 'pimsleur', 'nn-GRU_nh-2_loss-sMAPE', 'nn-GRU_nh-2_loss-sMAPE-p',
'nn-GRU_nh-2_loss-sMAPE-t', 'nn-GRU_nh-2_loss-sMAPE-p-t')
# models = ('pimsleur', 'leitner', 'HLR-lex', 'HLR', 'nn-GRU_nh-4_loss-sMAPE-p-t', 'nn-GRU_nh-4_loss-sMAPE-p',
# 'nn-GRU_nh-4_loss-sMAPE-t', 'nn-GRU_nh-4_loss-sMAPE')
def smape(A, F):
return 1 / len(A) * np.sum(2 * np.abs(F - A) / (np.abs(A) + np.abs(F)))
for m in models:
print(f'model: {m}')
result_files = os.listdir(f'./result/{m}')
if '.DS_Store' in result_files:
result_files.remove('.DS_Store')
if len(result_files) == 0:
continue
result_files.sort()
avg_mae = []
avg_mse = []
avg_mape = []
avg_smape = []
avg_mae_h = []
for i, filename in enumerate(result_files):
data = pd.read_csv(f'./result/{m}/{filename}', sep='\t', index_col=[0])
avg_mae.append(mean_absolute_error(data['p'], data['pp']))
avg_mse.append(mean_squared_error(data['p'], data['pp']))
avg_mape.append(mean_absolute_percentage_error(data['h'], data['hh']))
avg_smape.append(smape(data['h'], data['hh']))
avg_mae_h.append(mean_absolute_error(data['h'], data['hh']))
print(
f"{filename}\tmae(p): {avg_mae[i]:.4f}\tmse(p): {avg_mse[i]:.4f}\tmape(h): {avg_mape[i]:.4f}\tsmape(h): {avg_smape[i]:.4f}\tmae(h): {avg_mae_h[i]:.4f}")
print(
f"avg\tmae(p): {sum(avg_mae) / len(avg_mae):.4f}\tmse(p): {sum(avg_mse) / len(avg_mse):.4f}\tmape(h): {sum(avg_mape) / len(avg_mape):.4f}\tsmape(h): {sum(avg_smape) / len(avg_smape):.4f}\tmae(h): {sum(avg_mae_h) / len(avg_mae_h):.4f}")