Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

关于提供的模型文件RFB512_E_34_4.pth #62

Open
achillesli opened this issue Nov 23, 2018 · 2 comments
Open

关于提供的模型文件RFB512_E_34_4.pth #62

achillesli opened this issue Nov 23, 2018 · 2 comments

Comments

@achillesli
Copy link

你好,我在使用RFB512_E_34_4.pth的时候,
'--version', default=RFB_E_vgg ,'--size', default='512',cfg = COCO_512,但载入参数的时候有错误,是哪里我忽略了还没选好么?报错如下:

RuntimeError: Error(s) in loading state_dict for RFBNet:
Missing key(s) in state_dict: "Norm.branch3.3.conv.weight", "Norm.branch3.3.bn.bias", "Norm.branch3.3.bn.running_mean", "Norm.branch3.3.bn.running_var", "Norm.branch3.3.bn.weight", "extras.3.conv.weight", "extras.3.bn.bias", "extras.3.bn.running_mean", "extras.3.bn.running_var", "extras.3.bn.weight", "extras.4.conv.weight", "extras.4.bn.bias", "extras.4.bn.running_mean", "extras.4.bn.running_var", "extras.4.bn.weight".
Unexpected key(s) in state_dict: "reduce.conv.weight", "reduce.bn.weight", "reduce.bn.bias", "reduce.bn.running_mean", "reduce.bn.running_var", "up_reduce.conv.weight", "up_reduce.bn.weight", "up_reduce.bn.bias", "up_reduce.bn.running_mean", "up_reduce.bn.running_var", "Norm.branch4.0.conv.weight", "Norm.branch4.0.bn.weight", "Norm.branch4.0.bn.bias", "Norm.branch4.0.bn.running_mean", "Norm.branch4.0.bn.running_var", "Norm.branch4.1.conv.weight", "Norm.branch4.1.bn.weight", "Norm.branch4.1.bn.bias", "Norm.branch4.1.bn.running_mean", "Norm.branch4.1.bn.running_var", "Norm.branch4.2.conv.weight", "Norm.branch4.2.bn.weight", "Norm.branch4.2.bn.bias", "Norm.branch4.2.bn.running_mean", "Norm.branch4.2.bn.running_var", "Norm.branch5.0.conv.weight", "Norm.branch5.0.bn.weight", "Norm.branch5.0.bn.bias", "Norm.branch5.0.bn.running_mean", "Norm.branch5.0.bn.running_var", "Norm.branch5.1.conv.weight", "Norm.branch5.1.bn.weight", "Norm.branch5.1.bn.bias", "Norm.branch5.1.bn.running_mean", "Norm.branch5.1.bn.running_var", "Norm.branch5.2.conv.weight", "Norm.branch5.2.bn.weight", "Norm.branch5.2.bn.bias", "Norm.branch5.2.bn.running_mean", "Norm.branch5.2.bn.running_var", "Norm.branch5.3.conv.weight", "Norm.branch5.3.bn.weight", "Norm.branch5.3.bn.bias", "Norm.branch5.3.bn.running_mean", "Norm.branch5.3.bn.running_var", "Norm.branch6.0.conv.weight", "Norm.branch6.0.bn.weight", "Norm.branch6.0.bn.bias", "Norm.branch6.0.bn.running_mean", "Norm.branch6.0.bn.running_var", "Norm.branch6.1.conv.weight", "Norm.branch6.1.bn.weight", "Norm.branch6.1.bn.bias", "Norm.branch6.1.bn.running_mean", "Norm.branch6.1.bn.running_var", "Norm.branch6.2.conv.weight", "Norm.branch6.2.bn.weight", "Norm.branch6.2.bn.bias", "Norm.branch6.2.bn.running_mean", "Norm.branch6.2.bn.running_var", "Norm.branch6.3.conv.weight", "Norm.branch6.3.bn.weight", "Norm.branch6.3.bn.bias", "Norm.branch6.3.bn.running_mean", "Norm.branch6.3.bn.running_var", "extras.0.branch3.0.conv.weight", "extras.0.branch3.0.bn.weight", "extras.0.branch3.0.bn.bias", "extras.0.branch3.0.bn.running_mean", "extras.0.branch3.0.bn.running_var", "extras.0.branch3.1.conv.weight", "extras.0.branch3.1.bn.weight", "extras.0.branch3.1.bn.bias", "extras.0.branch3.1.bn.running_mean", "extras.0.branch3.1.bn.running_var", "extras.0.branch3.2.conv.weight", "extras.0.branch3.2.bn.weight", "extras.0.branch3.2.bn.bias", "extras.0.branch3.2.bn.running_mean", "extras.0.branch3.2.bn.running_var", "extras.0.branch3.3.conv.weight", "extras.0.branch3.3.bn.weight", "extras.0.branch3.3.bn.bias", "extras.0.branch3.3.bn.running_mean", "extras.0.branch3.3.bn.running_var", "extras.1.branch3.0.conv.weight", "extras.1.branch3.0.bn.weight", "extras.1.branch3.0.bn.bias", "extras.1.branch3.0.bn.running_mean", "extras.1.branch3.0.bn.running_var", "extras.1.branch3.1.conv.weight", "extras.1.branch3.1.bn.weight", "extras.1.branch3.1.bn.bias", "extras.1.branch3.1.bn.running_mean", "extras.1.branch3.1.bn.running_var", "extras.1.branch3.2.conv.weight", "extras.1.branch3.2.bn.weight", "extras.1.branch3.2.bn.bias", "extras.1.branch3.2.bn.running_mean", "extras.1.branch3.2.bn.running_var", "extras.1.branch3.3.conv.weight", "extras.1.branch3.3.bn.weight", "extras.1.branch3.3.bn.bias", "extras.1.branch3.3.bn.running_mean", "extras.1.branch3.3.bn.running_var", "extras.2.branch3.0.conv.weight", "extras.2.branch3.0.bn.weight", "extras.2.branch3.0.bn.bias", "extras.2.branch3.0.bn.running_mean", "extras.2.branch3.0.bn.running_var", "extras.2.branch3.1.conv.weight", "extras.2.branch3.1.bn.weight", "extras.2.branch3.1.bn.bias", "extras.2.branch3.1.bn.running_mean", "extras.2.branch3.1.bn.running_var", "extras.2.branch3.2.conv.weight", "extras.2.branch3.2.bn.weight", "extras.2.branch3.2.bn.bias", "extras.2.branch3.2.bn.running_mean", "extras.2.branch3.2.bn.running_var", "extras.2.branch3.3.conv.weight", "extras.2.branch3.3.bn.weight", "extras.2.branch3.3.bn.bias", "extras.2.branch3.3.bn.running_mean", "extras.2.branch3.3.bn.running_var", "extras.3.branch0.0.conv.weight", "extras.3.branch0.0.bn.weight", "extras.3.branch0.0.bn.bias", "extras.3.branch0.0.bn.running_mean", "extras.3.branch0.0.bn.running_var", "extras.3.branch0.1.conv.weight", "extras.3.branch0.1.bn.weight", "extras.3.branch0.1.bn.bias", "extras.3.branch0.1.bn.running_mean", "extras.3.branch0.1.bn.running_var", "extras.3.branch1.0.conv.weight", "extras.3.branch1.0.bn.weight", "extras.3.branch1.0.bn.bias", "extras.3.branch1.0.bn.running_mean", "extras.3.branch1.0.bn.running_var", "extras.3.branch1.1.conv.weight", "extras.3.branch1.1.bn.weight", "extras.3.branch1.1.bn.bias", "extras.3.branch1.1.bn.running_mean", "extras.3.branch1.1.bn.running_var", "extras.3.branch1.2.conv.weight", "extras.3.branch1.2.bn.weight", "extras.3.branch1.2.bn.bias", "extras.3.branch1.2.bn.running_mean", "extras.3.branch1.2.bn.running_var", "extras.3.branch2.0.conv.weight", "extras.3.branch2.0.bn.weight", "extras.3.branch2.0.bn.bias", "extras.3.branch2.0.bn.running_mean", "extras.3.branch2.0.bn.running_var", "extras.3.branch2.1.conv.weight", "extras.3.branch2.1.bn.weight", "extras.3.branch2.1.bn.bias", "extras.3.branch2.1.bn.running_mean", "extras.3.branch2.1.bn.running_var", "extras.3.branch2.2.conv.weight", "extras.3.branch2.2.bn.weight", "extras.3.branch2.2.bn.bias", "extras.3.branch2.2.bn.running_mean", "extras.3.branch2.2.bn.running_var", "extras.3.branch2.3.conv.weight", "extras.3.branch2.3.bn.weight", "extras.3.branch2.3.bn.bias", "extras.3.branch2.3.bn.running_mean", "extras.3.branch2.3.bn.running_var", "extras.3.ConvLinear.conv.weight", "extras.3.ConvLinear.bn.weight", "extras.3.ConvLinear.bn.bias", "extras.3.ConvLinear.bn.running_mean", "extras.3.ConvLinear.bn.running_var", "extras.3.shortcut.conv.weight", "extras.3.shortcut.bn.weight", "extras.3.shortcut.bn.bias", "extras.3.shortcut.bn.running_mean", "extras.3.shortcut.bn.running_var", "extras.4.branch0.0.conv.weight", "extras.4.branch0.0.bn.weight", "extras.4.branch0.0.bn.bias", "extras.4.branch0.0.bn.running_mean", "extras.4.branch0.0.bn.running_var", "extras.4.branch0.1.conv.weight", "extras.4.branch0.1.bn.weight", "extras.4.branch0.1.bn.bias", "extras.4.branch0.1.bn.running_mean", "extras.4.branch0.1.bn.running_var", "extras.4.branch1.0.conv.weight", "extras.4.branch1.0.bn.weight", "extras.4.branch1.0.bn.bias", "extras.4.branch1.0.bn.running_mean", "extras.4.branch1.0.bn.running_var", "extras.4.branch1.1.conv.weight", "extras.4.branch1.1.bn.weight", "extras.4.branch1.1.bn.bias", "extras.4.branch1.1.bn.running_mean", "extras.4.branch1.1.bn.running_var", "extras.4.branch1.2.conv.weight", "extras.4.branch1.2.bn.weight", "extras.4.branch1.2.bn.bias", "extras.4.branch1.2.bn.running_mean", "extras.4.branch1.2.bn.running_var", "extras.4.branch2.0.conv.weight", "extras.4.branch2.0.bn.weight", "extras.4.branch2.0.bn.bias", "extras.4.branch2.0.bn.running_mean", "extras.4.branch2.0.bn.running_var", "extras.4.branch2.1.conv.weight", "extras.4.branch2.1.bn.weight", "extras.4.branch2.1.bn.bias", "extras.4.branch2.1.bn.running_mean", "extras.4.branch2.1.bn.running_var", "extras.4.branch2.2.conv.weight", "extras.4.branch2.2.bn.weight", "extras.4.branch2.2.bn.bias", "extras.4.branch2.2.bn.running_mean", "extras.4.branch2.2.bn.running_var", "extras.4.branch2.3.conv.weight", "extras.4.branch2.3.bn.weight", "extras.4.branch2.3.bn.bias", "extras.4.branch2.3.bn.running_mean", "extras.4.branch2.3.bn.running_var", "extras.4.ConvLinear.conv.weight", "extras.4.ConvLinear.bn.weight", "extras.4.ConvLinear.bn.bias", "extras.4.ConvLinear.bn.running_mean", "extras.4.ConvLinear.bn.running_var", "extras.4.shortcut.conv.weight", "extras.4.shortcut.bn.weight", "extras.4.shortcut.bn.bias", "extras.4.shortcut.bn.running_mean", "extras.4.shortcut.bn.running_var", "loc.6.weight", "loc.6.bias", "conf.6.weight", "conf.6.bias".
While copying the parameter named "Norm.branch0.0.conv.weight", whose dimensions in the model are torch.Size([128, 512, 1, 1]) and whose dimensions in the checkpoint are torch.Size([64, 512, 1, 1]).
While copying the parameter named "Norm.branch0.0.bn.bias", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch0.0.bn.running_mean", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch0.0.bn.running_var", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch0.0.bn.weight", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch0.1.conv.weight", whose dimensions in the model are torch.Size([128, 128, 3, 3]) and whose dimensions in the checkpoint are torch.Size([64, 64, 3, 3]).
While copying the parameter named "Norm.branch0.1.bn.bias", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch0.1.bn.running_mean", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch0.1.bn.running_var", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch0.1.bn.weight", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch1.0.conv.weight", whose dimensions in the model are torch.Size([128, 512, 1, 1]) and whose dimensions in the checkpoint are torch.Size([64, 512, 1, 1]).
While copying the parameter named "Norm.branch1.0.bn.bias", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch1.0.bn.running_mean", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch1.0.bn.running_var", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch1.0.bn.weight", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch1.1.conv.weight", whose dimensions in the model are torch.Size([128, 128, 3, 1]) and whose dimensions in the checkpoint are torch.Size([64, 64, 3, 1]).
While copying the parameter named "Norm.branch1.1.bn.bias", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch1.1.bn.running_mean", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch1.1.bn.running_var", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch1.1.bn.weight", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch1.2.conv.weight", whose dimensions in the model are torch.Size([128, 128, 3, 3]) and whose dimensions in the checkpoint are torch.Size([64, 64, 3, 3]).
While copying the parameter named "Norm.branch1.2.bn.bias", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch1.2.bn.running_mean", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch1.2.bn.running_var", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch1.2.bn.weight", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch2.0.conv.weight", whose dimensions in the model are torch.Size([128, 512, 1, 1]) and whose dimensions in the checkpoint are torch.Size([64, 512, 1, 1]).
While copying the parameter named "Norm.branch2.0.bn.bias", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch2.0.bn.running_mean", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch2.0.bn.running_var", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch2.0.bn.weight", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch2.1.conv.weight", whose dimensions in the model are torch.Size([128, 128, 1, 3]) and whose dimensions in the checkpoint are torch.Size([64, 64, 1, 3]).
While copying the parameter named "Norm.branch2.1.bn.bias", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch2.1.bn.running_mean", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch2.1.bn.running_var", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch2.1.bn.weight", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch2.2.conv.weight", whose dimensions in the model are torch.Size([128, 128, 3, 3]) and whose dimensions in the checkpoint are torch.Size([64, 64, 3, 3]).
While copying the parameter named "Norm.branch2.2.bn.bias", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch2.2.bn.running_mean", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch2.2.bn.running_var", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch2.2.bn.weight", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch3.1.conv.weight", whose dimensions in the model are torch.Size([96, 64, 1, 3]) and whose dimensions in the checkpoint are torch.Size([64, 64, 3, 1]).
While copying the parameter named "Norm.branch3.1.bn.bias", whose dimensions in the model are torch.Size([96]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch3.1.bn.running_mean", whose dimensions in the model are torch.Size([96]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch3.1.bn.running_var", whose dimensions in the model are torch.Size([96]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch3.1.bn.weight", whose dimensions in the model are torch.Size([96]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch3.2.conv.weight", whose dimensions in the model are torch.Size([128, 96, 3, 1]) and whose dimensions in the checkpoint are torch.Size([64, 64, 3, 3]).
While copying the parameter named "Norm.branch3.2.bn.bias", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch3.2.bn.running_mean", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch3.2.bn.running_var", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.branch3.2.bn.weight", whose dimensions in the model are torch.Size([128]) and whose dimensions in the checkpoint are torch.Size([64]).
While copying the parameter named "Norm.ConvLinear.conv.weight", whose dimensions in the model are torch.Size([512, 512, 1, 1]) and whose dimensions in the checkpoint are torch.Size([512, 448, 1, 1]).
While copying the parameter named "extras.0.ConvLinear.conv.weight", whose dimensions in the model are torch.Size([1024, 768, 1, 1]) and whose dimensions in the checkpoint are torch.Size([1024, 1024, 1, 1]).
While copying the parameter named "extras.1.ConvLinear.conv.weight", whose dimensions in the model are torch.Size([512, 768, 1, 1]) and whose dimensions in the checkpoint are torch.Size([512, 1024, 1, 1]).
While copying the parameter named "extras.2.ConvLinear.conv.weight", whose dimensions in the model are torch.Size([256, 384, 1, 1]) and whose dimensions in the checkpoint are torch.Size([256, 512, 1, 1]).
While copying the parameter named "extras.6.conv.weight", whose dimensions in the model are torch.Size([256, 128, 3, 3]) and whose dimensions in the checkpoint are torch.Size([256, 128, 4, 4]).
While copying the parameter named "loc.4.bias", whose dimensions in the model are torch.Size([16]) and whose dimensions in the checkpoint are torch.Size([24]).
While copying the parameter named "loc.4.weight", whose dimensions in the model are torch.Size([16, 256, 3, 3]) and whose dimensions in the checkpoint are torch.Size([24, 256, 3, 3]).
While copying the parameter named "conf.0.bias", whose dimensions in the model are torch.Size([126]) and whose dimensions in the checkpoint are torch.Size([486]).
While copying the parameter named "conf.0.weight", whose dimensions in the model are torch.Size([126, 512, 3, 3]) and whose dimensions in the checkpoint are torch.Size([486, 512, 3, 3]).
While copying the parameter named "conf.1.bias", whose dimensions in the model are torch.Size([126]) and whose dimensions in the checkpoint are torch.Size([486]).
While copying the parameter named "conf.1.weight", whose dimensions in the model are torch.Size([126, 1024, 3, 3]) and whose dimensions in the checkpoint are torch.Size([486, 1024, 3, 3]).
While copying the parameter named "conf.2.bias", whose dimensions in the model are torch.Size([126]) and whose dimensions in the checkpoint are torch.Size([486]).
While copying the parameter named "conf.2.weight", whose dimensions in the model are torch.Size([126, 512, 3, 3]) and whose dimensions in the checkpoint are torch.Size([486, 512, 3, 3]).
While copying the parameter named "conf.3.bias", whose dimensions in the model are torch.Size([126]) and whose dimensions in the checkpoint are torch.Size([486]).
While copying the parameter named "conf.3.weight", whose dimensions in the model are torch.Size([126, 256, 3, 3]) and whose dimensions in the checkpoint are torch.Size([486, 256, 3, 3]).
While copying the parameter named "conf.4.bias", whose dimensions in the model are torch.Size([84]) and whose dimensions in the checkpoint are torch.Size([486]).
While copying the parameter named "conf.4.weight", whose dimensions in the model are torch.Size([84, 256, 3, 3]) and whose dimensions in the checkpoint are torch.Size([486, 256, 3, 3]).
While copying the parameter named "conf.5.bias", whose dimensions in the model are torch.Size([84]) and whose dimensions in the checkpoint are torch.Size([324]).
While copying the parameter named "conf.5.weight", whose dimensions in the model are torch.Size([84, 256, 3, 3]) and whose dimensions in the checkpoint are torch.Size([324, 256, 3, 3]).

@dazhangzhang
Copy link

@achillesli hello,so, this problem has be solved?

@DonghoonPark12
Copy link

@achillesli Did you solve the problem??

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants