-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_forest.py
53 lines (44 loc) · 2 KB
/
random_forest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import logging
import json
import numpy as np
from sklearn.ensemble import RandomForestRegressor
class RandomForest:
def __init__(self):
self.cluster_data_file_name = './cluster_data.json'
self.train_test_data_file = './train_test_data.json'
logging.basicConfig(level=logging.INFO)
self.read_data()
self.train_model()
self.calculate_accuracy()
def read_data(self):
logging.info('Reading data')
with open(self.cluster_data_file_name) as fh:
data = json.load(fh)
self.embedding_size = data['embedding_size']
self.num_clusters = data['num_clusters']
fh.close()
with open(self.train_test_data_file) as fh:
data = json.load(fh)
self.train_data = np.array(data['train_data'], dtype=np.float64)
self.train_data = np.average(self.train_data, axis=1)
self.train_labels = np.array(data['train_alternate_labels'], dtype=np.float64)
self.test_data = np.array(data['test_data'], dtype=np.float64)
self.test_data = np.average(self.test_data, axis=1)
self.test_labels = np.array(data['test_alternate_labels'], dtype=np.float64)
fh.close()
def train_model(self):
self.regressor = RandomForestRegressor(n_estimators=480, random_state=0)
self.regressor.fit(self.train_data, self.train_labels)
def calculate_accuracy(self):
predictions = self.regressor.predict(self.test_data)
correct = 0
total = len(self.test_labels)
for index, prediction in enumerate(predictions):
# if (prediction > 15 and self.test_labels[index] > 15):
if abs(prediction - self.test_labels[index]) < 10:
correct = correct + 1
# elif(prediction <= 15 and self.test_labels[index] <= 15):
# correct = correct + 1
accuracy = correct/total
print('Final accuracy is ' + str(accuracy))
model = RandomForest()