-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathfeatures.py
420 lines (364 loc) · 14.2 KB
/
features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import os
from engine.config import parser
import torch
from engine.tools.utils import makedirs, set_random_seed
from engine.transforms.default import build_transform
from engine.datasets.utils import DatasetWrapper, get_few_shot_setup_name, get_few_shot_benchmark
from engine.templates import get_templates
from engine import clip
from engine.clip import partial_model
def get_backbone_name(clip_encoder):
return clip_encoder.replace("/", "-")
def get_image_encoder_name(clip_encoder, image_layer_idx):
return "_".join([get_backbone_name(clip_encoder), str(image_layer_idx)])
def get_text_encoder_name(clip_encoder, text_layer_idx):
return "_".join([get_backbone_name(clip_encoder), str(text_layer_idx)])
def get_view_name(image_augmentation, image_views=1):
name = f"{image_augmentation}"
if image_augmentation != "none":
assert image_views > 0
name += f"_view_{image_views}"
return name
def get_image_encoder_dir(feature_dir, clip_encoder, image_layer_idx):
image_encoder_path = os.path.join(
feature_dir,
'image',
get_image_encoder_name(clip_encoder, image_layer_idx)
)
return image_encoder_path
def get_image_features_path(dataset,
train_shot,
seed,
feature_dir,
clip_encoder,
image_layer_idx,
image_augmentation,
image_views=1):
image_features_path = os.path.join(
get_image_encoder_dir(feature_dir, clip_encoder, image_layer_idx),
dataset,
get_view_name(image_augmentation, image_views),
f"{get_few_shot_setup_name(train_shot, seed)}.pth")
return image_features_path
def get_test_features_path(dataset,
feature_dir,
clip_encoder,
image_layer_idx):
test_features_path = os.path.join(
get_image_encoder_dir(feature_dir, clip_encoder, image_layer_idx),
dataset,
"test.pth"
)
return test_features_path
def get_text_encoder_dir(feature_dir,
clip_encoder,
text_layer_idx):
text_encoder_path = os.path.join(
feature_dir,
'text',
get_text_encoder_name(clip_encoder, text_layer_idx)
)
return text_encoder_path
def get_text_features_path(dataset,
feature_dir,
clip_encoder,
text_layer_idx,
text_augmentation):
text_features_path = os.path.join(
get_text_encoder_dir(feature_dir, clip_encoder, text_layer_idx),
dataset,
f"{text_augmentation}.pth")
return text_features_path
def extract_text_features(dataset, text_augmentation, text_encoder, lab2cname):
# Extract text features from CLIP
features_dict = {
'features': None,
'labels': None,
'eot_indices': None,
'prompts': {},
'lab2cname': lab2cname,
}
templates = get_templates(dataset, text_augmentation)
text_encoder.feature_extractor.eval()
with torch.no_grad():
for label, cname in lab2cname.items():
str_prompts = [template.format(cname.replace("_", " ")) for template in templates]
prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda()
features, eot_indices = text_encoder.feature_extractor(prompts)
features = features.cpu()
eot_indices = eot_indices.cpu()
labels = torch.Tensor([label for _ in templates]).long()
if features_dict['features'] is None:
features_dict['features'] = features
features_dict['labels'] = labels
features_dict['eot_indices'] = eot_indices
else:
features_dict['features'] = torch.cat((features_dict['features'], features), 0)
features_dict['labels'] = torch.cat((features_dict['labels'], labels))
features_dict['eot_indices'] = torch.cat((features_dict['eot_indices'], eot_indices))
features_dict['prompts'][label] = str_prompts
return features_dict
def extract_features(image_encoder, data_source, transform, num_views=1, test_batch_size=32, num_workers=4):
features_dict = {
'features': torch.Tensor(),
'labels': torch.Tensor(),
'paths': [],
}
######################################
# Setup DataLoader
######################################
loader = torch.utils.data.DataLoader(
DatasetWrapper(data_source, transform=transform),
batch_size=test_batch_size,
sampler=None,
shuffle=False,
num_workers=num_workers,
drop_last=False,
pin_memory=torch.cuda.is_available(),
)
########################################
# Start Feature Extractor
########################################
image_encoder.feature_extractor.eval()
with torch.no_grad():
for _ in range(num_views):
for batch_idx, batch in enumerate(loader):
data = batch["img"].cuda()
feature = image_encoder.feature_extractor(data) # This is not L2 normed
feature = feature.cpu()
if batch_idx == 0:
features_dict['features'] = feature
features_dict['labels'] = batch['label']
features_dict['paths'] = batch['impath']
else:
features_dict['features'] = torch.cat((features_dict['features'], feature), 0)
features_dict['labels'] = torch.cat((features_dict['labels'], batch['label']))
features_dict['paths'] = features_dict['paths'] + list(batch['impath'])
return features_dict
def prepare_text_features(clip_model, args, lab2cname):
text_encoder_dir = get_text_encoder_dir(
args.feature_dir,
args.clip_encoder,
args.text_layer_idx
)
makedirs(text_encoder_dir)
text_encoder_path = os.path.join(text_encoder_dir, "encoder.pth")
# Check if text partial model exists already
if os.path.exists(text_encoder_path):
print(f"text encoder already saved at {text_encoder_path}")
text_encoder = torch.load(text_encoder_path)
else:
print(f"Saving text encoder to {text_encoder_path}")
text_encoder = partial_model.get_text_encoder(
args.text_layer_idx,
clip_model
)
torch.save(text_encoder, text_encoder_path)
# Text features extraction
text_features_path = get_text_features_path(
args.dataset,
args.feature_dir,
args.clip_encoder,
args.text_layer_idx,
args.text_augmentation
)
makedirs(os.path.dirname(text_features_path))
if os.path.exists(text_features_path):
print(f"Text features already saved at {text_features_path}")
else:
print(f"Saving features to {text_features_path}")
text_features = {
'features': torch.Tensor(),
'labels': torch.Tensor(),
'prompts': [],
'classnames': [],
}
print(f"Extracting features for texts ...")
text_features = extract_text_features(
args.dataset, args.text_augmentation, text_encoder, lab2cname)
torch.save(text_features, text_features_path)
def get_image_encoder(clip_model, args):
image_encoder_dir = get_image_encoder_dir(
args.feature_dir,
args.clip_encoder,
args.image_layer_idx
)
makedirs(image_encoder_dir)
image_encoder_path = os.path.join(image_encoder_dir, "encoder.pth")
# Check if image partial model exists already
if os.path.exists(image_encoder_path):
print(f"Image encoder already saved at {image_encoder_path}")
image_encoder = torch.load(image_encoder_path)
else:
print(f"Saving image encoder to {image_encoder_path}")
image_encoder = partial_model.get_image_encoder(
args.clip_encoder,
args.image_layer_idx,
clip_model
)
torch.save(image_encoder, image_encoder_path)
return image_encoder
def prepare_few_shot_image_features(clip_model, args, benchmark_train, benchmark_val):
image_encoder = get_image_encoder(clip_model, args)
# Check if (image) features are saved already
image_features_path = get_image_features_path(
args.dataset,
args.train_shot,
args.seed,
args.feature_dir,
args.clip_encoder,
args.image_layer_idx,
args.image_augmentation,
image_views=args.image_views
)
makedirs(os.path.dirname(image_features_path))
# import pdb; pdb.set_trace()
if os.path.exists(image_features_path):
print(f"Features already saved at {image_features_path}")
else:
print(f"Saving features to {image_features_path}")
image_features = {
'train': {},
'val': {},
}
train_transform = build_transform(args.image_augmentation)
test_transform = build_transform('none')
print(f"Extracting features for train split ...")
if args.image_augmentation == 'none':
num_views = 1
else:
num_views = args.image_views
assert num_views > 0, "Number of views must be greater than 0"
image_features['train'] = extract_features(
image_encoder, benchmark_train,
train_transform, num_views=num_views, test_batch_size=args.test_batch_size, num_workers=args.num_workers)
print(f"Extracting features for val split ...")
image_features['val'] = extract_features(
image_encoder, benchmark_val,
test_transform, num_views=1, test_batch_size=args.test_batch_size, num_workers=args.num_workers)
torch.save(image_features, image_features_path)
def prepare_test_image_features(clip_model, args, benchmark_test):
image_encoder = get_image_encoder(clip_model, args)
# Check if features are saved already
test_features_path = get_test_features_path(
args.dataset,
args.feature_dir,
args.clip_encoder,
args.image_layer_idx
)
makedirs(os.path.dirname(test_features_path))
if os.path.exists(test_features_path):
print(f"Test features already saved at {test_features_path}")
else:
print(f"Saving features to {test_features_path}")
test_transform = build_transform('none')
print(f"Extracting features for test split ...")
test_features = extract_features(
image_encoder,
benchmark_test, test_transform,
num_views=1, test_batch_size=args.test_batch_size, num_workers=args.num_workers)
torch.save(test_features, test_features_path)
def main(args):
if args.seed >= 0:
print("Setting fixed seed: {}".format(args.seed))
set_random_seed(args.seed)
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
########################################
# Train/Val/Test Split
########################################
few_shot_benchmark = get_few_shot_benchmark(
args.data_dir,
args.indices_dir,
args.dataset,
args.train_shot,
args.seed
)
########################################
# Setup Network
########################################
clip_model, _ = clip.load(args.clip_encoder, jit=False)
clip_model.float()
clip_model.eval()
########################################
# Feature Extraction
########################################
prepare_text_features(clip_model, args, few_shot_benchmark['lab2cname'])
prepare_few_shot_image_features(clip_model, args, few_shot_benchmark['train'], few_shot_benchmark['val'])
prepare_test_image_features(clip_model, args, few_shot_benchmark['test'])
if __name__ == "__main__":
# parser.add_argument(
# "--dataset",
# type=str,
# default="",
# choices=dataset_classes.keys(),
# help="number of train shot",
# )
# parser.add_argument(
# "--train-shot",
# type=int,
# default=1,
# help="number of train shot",
# )
# parser.add_argument(
# "--max-val-shot",
# type=int,
# default=4,
# help="number of val shot is min(max_val_shot, train_shot)",
# )
# parser.add_argument(
# "--seed",
# type=int,
# default=1,
# help="seed number",
# )
# parser.add_argument(
# "--clip-encoder",
# type=str,
# default="RN50",
# choices=["ViT-B/16", "ViT-B/32", "RN50", "RN101", "RN50x4", "RN50x16"],
# help="specify the clip encoder to use",
# )
# parser.add_argument(
# "--image-layer-idx",
# type=int,
# default=0,
# choices=[0, 1],
# help="specify how many image encoder layers to finetune. 0 means none. -1 means full finetuning.",
# )
# parser.add_argument(
# "--text-layer-idx",
# type=int,
# default=0,
# choices=[0, 1],
# help="specify how many text encoder layers to finetune. 0 means none. -1 means full finetuning.",
# )
# parser.add_argument(
# "--text-augmentation",
# type=str,
# default='hand_crafted',
# choices=['hand_crafted', # tip_adapter selected
# 'classname', # plain class name
# 'vanilla', # a photo of a {cls}.
# 'template_mining' # examples of best zero-shot templates for few-shot val set
# ],
# help="specify the text augmentation to use.",
# )
# parser.add_argument(
# "--image-augmentation",
# type=str,
# default='none',
# choices=['none', # only a single center crop
# 'flip', # add random flip view
# 'randomcrop', # add random crop view
# ],
# help="specify the image augmentation to use.",
# )
# parser.add_argument(
# "--image-views",
# type=int,
# default=1,
# help="if image-augmentation is not None, then specify the number of extra views.",
# )
args = parser.parse_args()
main(args)