-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathdomain_shift.py
427 lines (381 loc) · 17.2 KB
/
domain_shift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
from copy import deepcopy
import os
import torch
from torch.utils.data import DataLoader
from engine.config import parser
from engine.transforms.default import build_transform
from engine.tools.utils import makedirs, set_random_seed
from engine import clip
from engine.datasets.utils import TensorDataset, TextTensorDataset, get_label_map, get_testset
from engine.model.head import make_classifier_head, get_zero_shot_weights
from engine.model.logit import LogitHead
from engine.optimizer.default import HYPER_DICT
from engine.optimizer.optim import build_optimizer
from engine.optimizer.scheduler import build_lr_scheduler
from train import validate, \
get_save_dir, \
get_hyperparams_str, \
get_eval_heads, \
train, \
get_valid_batch_sizes
from features import get_backbone_name, \
extract_features, \
get_image_encoder, \
get_image_features_path, \
get_text_features_path, \
get_image_encoder_dir, \
get_text_encoder_dir, \
get_test_features_path
torch.set_num_threads(4) # To maximize efficiency, please tune the number of threads for your machine
CROSS_MODAL_BATCH_RATIO = 0.5 # Half of the batch is image, the other half is text
EVAL_FREQ = 100 # Evaluate on val set per 100 iterations (for early stopping)
IMAGENET_TESTSETS = [
'imagenetv2',
'imagenet_sketch',
'imagenet_a',
'imagenet_r',
]
def prepare_domain_shift_testset_features(args, TESTSETS=IMAGENET_TESTSETS):
########################################
# Setup Network
########################################
clip_model, _ = clip.load(args.clip_encoder, jit=False)
clip_model.float()
clip_model.eval()
image_encoder = get_image_encoder(clip_model, args)
for testset in TESTSETS:
# Check if features are saved already
test_features_path = get_test_features_path(
testset,
args.feature_dir,
args.clip_encoder,
args.image_layer_idx
)
makedirs(os.path.dirname(test_features_path))
if os.path.exists(test_features_path):
print(f"Test features already saved at {test_features_path}")
else:
print(f"Saving features to {test_features_path}")
test_transform = build_transform('none')
benchmark_test = get_testset(testset, args.data_dir)
print(f"Extracting features for test split ...")
test_features = extract_features(
image_encoder,
benchmark_test, test_transform,
num_views=1, test_batch_size=args.test_batch_size, num_workers=args.num_workers)
torch.save(test_features, test_features_path)
def main(args):
if args.seed >= 0:
print("Setting fixed seed: {}".format(args.seed))
set_random_seed(args.seed)
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
########################################
# Prepare for domain shift testset features
########################################
prepare_domain_shift_testset_features(args)
### Before scripts are mostly taken from train.py main() except for
### evaluating on the domain shifted test set
image_encoder_dir = get_image_encoder_dir(
args.feature_dir,
args.clip_encoder,
args.image_layer_idx
)
image_encoder_path = os.path.join(image_encoder_dir, "encoder.pth")
text_encoder_dir = get_text_encoder_dir(
args.feature_dir,
args.clip_encoder,
args.text_layer_idx
)
text_encoder_path = os.path.join(text_encoder_dir, "encoder.pth")
text_features_path = get_text_features_path(
args.dataset,
args.feature_dir,
args.clip_encoder,
args.text_layer_idx,
args.text_augmentation
)
text_features = torch.load(text_features_path)
# text_features['features'] = torch.nn.functional.normalize(text_features['features'], dim=1)
text_dataset = TextTensorDataset(
text_features['features'], text_features['labels'], text_features['eot_indices'])
ccrop_features_path = get_image_features_path(
args.dataset,
args.train_shot,
args.seed,
args.feature_dir,
args.clip_encoder,
args.image_layer_idx,
"none",
)
ccrop_features = torch.load(ccrop_features_path)
if args.image_augmentation == "none":
train_features = ccrop_features['train']['features']
train_labels = ccrop_features['train']['labels']
else:
# Add extra views
image_features_path = get_image_features_path(
args.dataset,
args.train_shot,
args.seed,
args.feature_dir,
args.clip_encoder,
args.image_layer_idx,
args.image_augmentation,
image_views=args.image_views,
)
image_features = torch.load(image_features_path)
train_features = torch.cat([ccrop_features['train']['features'], image_features['train']['features']], dim=0)
train_labels = torch.cat([ccrop_features['train']['labels'], image_features['train']['labels']], dim=0)
image_train_dataset = TensorDataset(
train_features,
train_labels
)
image_val_dataset = TensorDataset(
ccrop_features['val']['features'],
ccrop_features['val']['labels']
)
test_features_path = get_test_features_path(
args.dataset,
args.feature_dir,
args.clip_encoder,
args.image_layer_idx
)
test_features = torch.load(test_features_path)
test_dataset = TensorDataset(
test_features['features'],
test_features['labels']
)
save_dir = get_save_dir(args)
hyperparams = HYPER_DICT[args.hyperparams]
# filter out invalid batch sizes
VALID_BATCH_SIZES = get_valid_batch_sizes(hyperparams, text_dataset, image_train_dataset, modality=args.modality)
def get_experiment_count(hyperparams):
count = 1
count *= len(hyperparams['lr'])
count *= len(hyperparams['weight_decay'])
count *= len(VALID_BATCH_SIZES)
count *= len(hyperparams['max_iter'])
return count
experiment_count = get_experiment_count(hyperparams)
cur_count = 0
# sweep through hyperparameters
for lr in hyperparams['lr']:
for wd in hyperparams['weight_decay']:
for batch_size in VALID_BATCH_SIZES:
for iters in hyperparams['max_iter']:
cur_count += 1
hyperparams_str = get_hyperparams_str(
hyperparams['optim'], lr, wd, batch_size, iters)
# check if experiment has been done
checkpoint_dir = os.path.join(save_dir, hyperparams_str)
makedirs(checkpoint_dir)
test_result_dict = {}
domain_shift_result_path = os.path.join(checkpoint_dir, "domain_shift_result.pth")
if os.path.exists(domain_shift_result_path):
print(f"Already exists: {hyperparams_str} {cur_count}/{experiment_count}")
test_result_dict = torch.load(domain_shift_result_path)
continue
else:
print(f"Starting: {hyperparams_str} {cur_count}/{experiment_count}")
# train logreg
image_encoder = torch.load(
image_encoder_path).partial_model.train().cuda()
text_encoder = torch.load(
text_encoder_path).partial_model.train().cuda()
head, num_classes, in_features = make_classifier_head(
args.classifier_head,
args.clip_encoder,
args.classifier_init,
text_dataset,
text_encoder
)
logit_head = LogitHead(
head,
logit_scale=args.logit,
).train().cuda()
# Create the optimizer
params_groups = [
{'params': logit_head.parameters()},
{'params': image_encoder.parameters()},
{'params': text_encoder.parameters()},
]
optimizer = build_optimizer(params_groups, hyperparams['optim'], lr, wd)
scheduler = build_lr_scheduler(
optimizer,
hyperparams['lr_scheduler'],
hyperparams['warmup_iter'],
iters,
warmup_type=hyperparams['warmup_type'],
warmup_lr=hyperparams['warmup_min_lr']
)
criterion = torch.nn.CrossEntropyLoss()
text_batch_size = int(batch_size * CROSS_MODAL_BATCH_RATIO)
image_batch_size = batch_size - text_batch_size
text_loader = None
if text_batch_size > 0:
text_loader = DataLoader(
text_dataset,
batch_size=text_batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
)
image_loader = None
if image_batch_size > 0:
image_loader = DataLoader(
image_train_dataset,
batch_size=image_batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
)
val_loader = DataLoader(
image_val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
)
result_dict = train(
logit_head, image_encoder, text_encoder,
image_loader, val_loader, text_loader,
optimizer, scheduler, criterion, iters,
eval_freq=EVAL_FREQ
)
test_result_dict = {}
test_result_dict['val_acc'] = result_dict['val_acc']
test_result_dict['iter'] = result_dict['iter']
test_result_dict['test_accs'] = {}
test_result_dict['domain_shift_accs'] = {}
# Create the logreg model and load the weights
head, num_classes, in_features = make_classifier_head(
args.classifier_head,
args.clip_encoder,
args.classifier_init,
text_dataset,
text_encoder,
bias=False
)
old_logit_head = LogitHead(
head,
logit_scale=args.logit,
)
old_logit_head.load_state_dict(result_dict['logit_head'])
zero_shot_weights = get_zero_shot_weights(text_dataset, num_classes, in_features)
eval_heads = get_eval_heads(
deepcopy(old_logit_head.head),
zero_shot_weights,
logit=args.logit,
ratio_list=[0.5]
)
image_encoder = torch.load(image_encoder_path).partial_model
image_encoder.load_state_dict(result_dict['image_encoder'])
image_encoder = image_encoder.cuda().eval()
text_encoder = torch.load(text_encoder_path).partial_model
text_encoder.load_state_dict(result_dict['text_encoder'])
text_encoder = text_encoder.cuda().eval()
for eval_type in eval_heads:
eval_head = eval_heads[eval_type]
eval_head.cuda().eval()
test_loader = DataLoader(
test_dataset,
batch_size=args.test_batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
)
test_acc = validate(eval_head, image_encoder, test_loader, device="cuda")
test_result_dict['test_accs'][eval_type] = test_acc
eval_head.cpu()
### eval for separate testset
for test_dataset_name in IMAGENET_TESTSETS:
test_result_dict['domain_shift_accs'][test_dataset_name] = {}
extra_test_features_path = os.path.join(
args.feature_dir,
'image',
"_".join([get_backbone_name(args.clip_encoder), str(args.image_layer_idx)]),
test_dataset_name,
"test.pth"
)
extra_test_features = torch.load(extra_test_features_path)
extra_test_dataset = TensorDataset(
extra_test_features['features'], extra_test_features['labels'])
label_map = get_label_map(args.data_dir, test_dataset_name)
for eval_type in eval_heads:
eval_head = eval_heads[eval_type]
eval_head.cuda().eval()
test_loader = DataLoader(
extra_test_dataset,
batch_size=args.test_batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
)
if label_map is None:
test_acc = validate(eval_head, image_encoder, test_loader, device="cuda")
else:
# change eval_head to use label_map
assert isinstance(eval_head.head, torch.nn.Linear)
new_head = deepcopy(eval_head)
new_linear_head = torch.nn.Linear(eval_head.head.in_features, len(label_map), bias=False).cuda()
new_linear_head.weight.data = eval_head.head.weight.data[label_map]
new_head.head = new_linear_head
test_acc = validate(new_head, image_encoder, test_loader, device="cuda")
test_result_dict['domain_shift_accs'][test_dataset_name][eval_type] = test_acc
torch.save(test_result_dict, domain_shift_result_path)
print(test_result_dict)
print(f"Finished testing {hyperparams_str} {cur_count}/{experiment_count}")
if __name__ == "__main__":
# other arguments follow features.py
# parser.add_argument(
# "--modality",
# type=str,
# default="cross_modal",
# choices=["cross_modal", # half batch image, half batch text
# "uni_modal", # whole batch image
# ],
# help="whether or not to perform cross-modal training (ie. half batch is image, half batch is text)",
# )
# parser.add_argument(
# "--classifier_head",
# type=str,
# default="linear",
# choices=["linear", # linear classifier
# "adapter", # 2-layer MLP with 0.2 residual ratio following CLIP-adapter + linear classifier
# ],
# help="classifier head architecture",
# )
# parser.add_argument(
# "--classifier_init",
# type=str,
# default="zeroshot",
# choices=["zeroshot", # zero-shot/one-shot-text-based initialization
# "random", # random initialization
# ],
# help="classifier head initialization",
# )
# parser.add_argument(
# "--logit",
# type=float,
# default=4.60517, # CLIP's default logit scaling
# choices=[4.60517, # CLIP's default logit scaling
# 4.0, # for partial finetuning
# ],
# help="logit scale (exp(logit) is the inverse softmax temperature)",
# )
# parser.add_argument(
# "--hyperparams",
# type=str,
# default="linear",
# choices=["linear", # linear hyper
# "adapter", # adapter hyper
# "partial", # partial hyper
# ],
# help="hyperparams sweep",
# )
args = parser.parse_args()
assert args.dataset == "imagenet"
main(args)