-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCC.py
executable file
·136 lines (115 loc) · 4.86 KB
/
CC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import re
import chainer
import pickle
import numpy as np
import sys
#sys.path.append('../DSTC/ChatbotBaseline/egs/opensubs/tools') #bot.sh
sys.path.append('DSTC/ChatbotBaseline/egs/opensubs/tools') #main
#import seq2seq_model
import pdb
from chainer import cuda
from nltk.tokenize import casual_tokenize
from simpler_nlg import SimplerNLG
class CC:
def __init__(self, use_gpu=False, gpu=0, model_path='model/cc.opensub.bst', maxlen=20, beam=5, penalty=1, nbest=1):
print('initialize Chitchat module')
self.use_gpu = use_gpu
self.num_turn_history = 2 # 2 consecutive turns as history baseline
#pdb.set_trace()
if self.use_gpu and gpu >= 0:
cuda.check_cuda_available()
cuda.get_device_from_id(gpu).use()
self.xp = cuda.cupy
else:
#chainer.cuda.available = False
self.xp = np
# use chainer in testing mode
chainer.config.train = False
#pdb.set_trace()
# Prepare RNN model and load data
print('Loading model params from ' + model_path)
with open(model_path, 'rb') as f:
#pdb.set_trace()
self.vocab, self.model, _ = pickle.load(f)
#pdb.set_trace()
if self.use_gpu and gpu >= 0:
self.model.to_gpu()
# report data summary
print('vocabulary size = %d' % len(self.vocab))
self.vocablist = sorted(self.vocab.keys(), key=lambda s: self.vocab[s])
# generate sentences
self.unk = self.vocab['<unk>']
self.eos = self.vocab['<eos>']
self.state = None
self.maxlen = maxlen
self.beam = beam
self.penalty = penalty
self.nbest = nbest
def get_reply(self, history_context, history_reply, message=""):
# Note : history_context & history_reply : collections.deque
#print('cc0')
history_context_text = ""
if (len(history_context) >= self.num_turn_history):
#print(history_context[0])
#print(history_context[1])
for i in range(self.num_turn_history):
#print('history_context')
#print(len(history_context) + i - self.num_turn_history)
history_context_text += history_context[len(history_context) + i - self.num_turn_history] + " "
#print('cc01')
history_reply_text = ""
if (len(history_reply) >= self.num_turn_history):
for i in range(self.num_turn_history):
history_reply_text += history_reply[len(history_reply) + i - self.num_turn_history] + " "
# print('(CC) history_context = ' + history_context_text) # Test PASS
# print('(CC) history_reply = ' + history_reply_text) # Test PASS
# print('(CC) message = ' + message) # Test PASS
#print('cc02')
sentence = []
for token in casual_tokenize(message, preserve_case=False, reduce_len=True):
# make a space before apostrophe
token = re.sub(r'^([a-z]+)\'([a-z]+)$', '\\1 \'\\2', token)
for w in token.split():
sentence.append(self.vocab[w] if w in self.vocab else self.unk)
#print('cc1')
x_data = np.array(sentence, dtype=np.int32)
#print('cc2')
with chainer.using_config('train', False):
x = chainer.Variable(self.xp.asarray(x_data))
#print('cc3')
#self.state exists
"""
besthyps, self.state = self.model.generate(self.state, x, self.eos, self.eos, unk=self.unk,
maxlen=self.maxlen,
beam=self.beam,
penalty=self.penalty,
nbest=self.nbest)
"""
#self.state = None
besthyps, self.state = self.model.generate(None, x, self.eos, self.eos, unk=self.unk,
maxlen=self.maxlen,
beam=self.beam,
penalty=self.penalty,
nbest=self.nbest)
#print('cc4')
# Ver1
'''
reply = ""
#print('cc5')
for w in besthyps[0][0]:
if w != self.eos:
reply += self.vocablist[w] + " "
#print('cc6')
reply = reply[:-1]
return reply
'''
# Ver2
reply = []
#print('cc5')
for w in besthyps[0][0]:
if w != self.eos:
reply.append(self.vocablist[w])
return SimplerNLG.realise(reply)
if __name__ == "__main__":
cc = CC()
print(cc.get_reply([], [], "Hi."))