-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshowcase.py
103 lines (55 loc) · 3.36 KB
/
showcase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import BASolver2
import makesud
import XSolver
import gridcreater
import BASolver2
import OPBASolver
import performance
# Number of Sudokus in generated Sudoku Set
n = 1
if __name__ == "__main__":
# 1. Generate Sudoku
tempSudoku = makesud.make_sudoku()
print("1. Generated Sudoku:\n")
print(XSolver.decode_sudoku_to_ascii(9,tempSudoku)) # Transform Sudoku to readable output
generatedSudokus = gridcreater.gen(n, outfile="showcaseSudoku.json") #Generation of Sudoku Set with 1 Sudoku and saveing it to showcaseSudoku.json
# 2. Generatiuon of Sudoku Set with n Sudokus
print(f"\n \n2. Generated Sudoku Set with {n} Sudoku and Saved it to showcaseSudoku.json:\n")
for i,generatedSudoku in enumerate(generatedSudokus):
print(f"\nSudoku Nr. {i+1}")
print(XSolver.decode_sudoku_to_ascii(9, generatedSudoku)) # Transform Sudoku to readable output
# Solving with Native Backtracking
print(f"\n \n3.1 The {n} Sudoku(s) will now be solved with the Native Backtracking Algorithm:\n")
for i,genSud in enumerate(generatedSudokus):
genSudMatrix = XSolver.exact_to_matrix(9, genSud)
resMatrix = BASolver2.bASolverHandle(genSudMatrix)
resexact = XSolver.matrix_to_exact(resMatrix)
print(f"\nSudoku Nr. {i+1}. Solved with Native Backtracking:")
_, resexactr = resexact
print(XSolver.decode_sudoku_to_ascii(9, resexactr)) # Transform Sudoku to readable output
# Solving with Advanced Backtracking
print(f"\n \n3.2 The {n} Sudoku(s) will now be solved with the Optimized Backtracking Algorithm:\n")
for i,genSud in enumerate(generatedSudokus):
genSudMatrix = XSolver.exact_to_matrix(9, genSud)
resMatrix = OPBASolver.advHandel(genSudMatrix)
resexact = XSolver.matrix_to_exact(resMatrix)
print(f"\nSudoku Nr. {i+1}. Solved with Optimized Backtracking:")
_, resexactr = resexact
print(XSolver.decode_sudoku_to_ascii(9, resexactr)) # Transform Sudoku to readable output
# Solving with Algorithm X
print(f"3.3 The {n} Sudoku(s) will now be solved with the Algorithm X:")
for i,genSud in enumerate(generatedSudokus):
resSud = next(XSolver.sudoku(n = 9, problem=genSud))
print(f"\nSudoku Nr. {i+1}. Solved with Algorithm X:")
print(XSolver.decode_sudoku_to_ascii(9, resSud)) # Transform Sudoku to readable output
# 4. Speed Test with performance.py
print(f"\n \n4. Executing Speedtest with the generated Sudoku Set: \n")
normtime = performance.execute(generatedSudokus, performance.normalBacktrack)
print(f"Native Backtracking took: {normtime:.5f} Seconds to solve {n} Sudoku(s).")
print(f"This means the Native Backtracking Algorithm took a average of {normtime/(n+1):.5f} Seconds to solve a Sudoku.\n \n")
advtime = performance.execute(generatedSudokus,performance.advancedBacktrack)
print(f"Optimized Backtracking took: {advtime:.5f} Seconds to solve {n} Sudoku(s).")
print(f"This means the Optimized Backtracking Algorithm took a average of {advtime/(n+1):.5f} Seconds to solve a Sudoku.\n \n")
xtime = performance.execute(generatedSudokus,performance.algox)
print(f"Algorithm X took: {xtime:.5f} Seconds to solve {n} Sudoku(s).")
print(f"This means Algorithm X took a average of {xtime/(n+1):.5f} Seconds to solve a Sudoku.\n \n")