forked from wushidiguo/hello-lottery
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetector.py
82 lines (59 loc) · 2.15 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
import torch
from models.yolo.utils.datasets import letterbox
from models.yolo.utils.general import check_img_size, non_max_suppression, scale_coords
from models.yolo.utils.torch_utils import select_device
from models.yolo.model import Model
from models.yolo.experimental import attempt_load
class Detector:
def __init__(
self,
model_file,
conf_thres = 0.25,
iou_thres = 0.45,
device = "cpu"
):
self.device = select_device(device)
weights = torch.load(model_file, self.device)
self.model = weights["model"]
self.stride = int(self.model.stride.max())
self.imgsz = check_img_size(640, s=self.stride)
self.conf_thres = conf_thres
self.iou_thres = iou_thres
self.half = device != "cpu"
if self.half:
self.model.half()
self.model.eval()
def __call__(
self,
img
):
shape = img.shape
img = letterbox(img, self.imgsz, stride=self.stride)[0] # resize & padding
img = img[:, :, ::-1].transpose(2, 0, 1) # hwc(bgr) -> hwc(rgb) -> c(rgb)hw
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(self.device)
img = img.half() if self.half else img.float()
img /= 255.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
with torch.no_grad():
pred = self.model(img, augment=True)[0]
pred = non_max_suppression(pred, self.conf_thres, self.iou_thres)[0]
if not len(pred):
return
# Scale boxes size back
pred[:, :4] = scale_coords(img.shape[2:], pred[:, :4], shape).round()
pred_ = pred[:, [0, 1, 2, 3, 5]].to("cpu", int).numpy()
cls = np.unique(pred_[:, -1], return_index=False)
if 0 in cls:
code = "ssq"
elif 2 in cls:
code = "cjdlt"
else:
return
if not 1 in cls and 3 in cls:
return
numbers = pred_[pred_[:, -1] == 1]
issue = pred_[pred_[:, -1] == 3]
return code, issue, numbers