-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscale2d.go
357 lines (327 loc) · 7.65 KB
/
scale2d.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
package main
import (
"encoding/csv"
"flag"
"fmt"
"log"
"math"
"os"
"strconv"
)
func createList(data [][]string) [][]float64 {
var elements [][]float64
for _, line := range data {
// omit header line
var rec []float64
for _, field := range line {
if field == "" {
rec = append(rec, math.NaN())
continue
}
n, _ := strconv.ParseFloat(field, 64)
//print(n)
rec = append(rec, n)
}
elements = append(elements, rec)
}
return elements
}
func getMean(data []float64) float64 {
sum := 0.0
count := 0
for _, j := range data {
if j != math.NaN() {
count++
sum = sum + j
}
}
return sum / float64(count)
}
func getMean2(data [][]float64) float64 {
sum := 0.0
count := 0
for i, j := range data {
for k, _ := range j {
if math.IsNaN(data[i][k]) {
continue
}
count++
sum = sum + data[i][k]
}
}
return sum / float64(count)
}
func getSD2(data [][]float64) float64 {
mean := getMean2(data)
sum := 0.0
count := 0
for _, j := range data {
for _, l := range j {
if math.IsNaN(l) {
continue
}
count++
sum = sum + (l-mean)*(l-mean)
}
}
return math.Sqrt(sum / float64(count))
}
func scaleList(data [][]float64) [][]float64 {
var a []float64
var ans [][]float64
mean := getMean2(data)
sd := getSD2(data)
for i, l1 := range data {
a = []float64{}
for j, _ := range l1 {
if data[i][j] != math.NaN() {
a = append(a, ((data[i][j] - mean) / sd))
}
}
ans = append(ans, a)
}
return ans
}
// Create the change in Alpha array for every column
func getAlphaChange(scaled_list [][]float64, tao []float64, gamma []float64) []float64 {
var ans []float64
for i, row := range scaled_list {
sum1 := 0.0
sum2 := 0.0
count := 0
for j, item := range row {
if math.IsNaN(item) {
continue
}
sum1 = sum1 + item
sum2 = sum2 + 1/tao[i]*gamma[j]
count++
}
ans = append(ans, sum1/sum2)
}
return ans
}
// Create the change in beta array for every column
func getBetaChange(scaled_list [][]float64, tao []float64, gamma []float64) []float64 {
var ans []float64
for i, _ := range scaled_list[0] {
sum1 := 0.0
sum2 := 0.0
count := 0
for j, _ := range scaled_list {
if math.IsNaN(scaled_list[j][i]) {
continue
}
//no need to check for tao and gamma to be NaN since a single numeric entry ensures the row and column have all parameters not equal to NaN
sum1 = sum1 + scaled_list[j][i]
sum2 = sum2 + 1/tao[i]*gamma[j]
count++
}
ans = append(ans, sum1/sum2)
}
return ans
}
func getTaoChange(scaled_list [][]float64) []float64 {
var ans []float64
for i, _ := range scaled_list {
sum1 := 0.0
count := 0
for j, _ := range scaled_list[0] {
if math.IsNaN(scaled_list[i][j]) {
continue
}
//no need to check for tao and gamma to be NaN since a single numeric entry ensures the row and column have all parameters not equal to NaN
sum1 = sum1 + scaled_list[i][j]*scaled_list[i][j]
count++
}
ans = append(ans, math.Sqrt(sum1/float64(count)))
}
return ans
}
func getGammaChange(scaled_list [][]float64) []float64 {
var ans []float64
for i, _ := range scaled_list[0] {
sum1 := 0.0
count := 0
for j, _ := range scaled_list {
if math.IsNaN(scaled_list[j][i]) {
continue
}
//no need to check for tao and gamma to be NaN since a single numeric entry ensures the row and column have all parameters not equal to NaN
sum1 = sum1 + scaled_list[j][i]*scaled_list[j][i]
count++
}
ans = append(ans, math.Sqrt(sum1/float64(count)))
}
return ans
}
func rescale(matrix [][]float64, alpha []float64, beta []float64, gamma []float64, tao []float64) [][]float64 {
var ans [][]float64
for i, row := range matrix {
var a []float64
for j, item := range row {
a = append(a, (item-alpha[i]-beta[j])/gamma[j]/tao[i])
}
ans = append(ans, a)
}
return ans
}
func calculateHeuristic(alpha []float64, beta []float64, gamma []float64, tao []float64) float64 {
sum1 := 0.0
sum2 := 0.0
sum3 := 0.0
sum4 := 0.0
for _, j := range alpha {
sum1 = sum1 + j*j
}
for _, j := range beta {
sum2 = sum2 + j*j
}
for _, j := range gamma {
sum3 = sum3 + math.Log(j)*math.Log(j)
}
for _, j := range tao {
sum4 = sum4 + math.Log(j)*math.Log(j)
}
return (sum1 + sum2 + sum3 + sum4)
}
func main() {
// open file
flag.Usage = func() {
fmt.Printf("Usage: %s [option1] <csvFile> [option2] <csvFile>\nOptions:\n", os.Args[0])
flag.PrintDefaults()
}
if len(os.Args) < 2 {
println("A filepath argument is required")
return
}
in := flag.String("i", "data.csv", "Input file path")
o := flag.String("o", "convergence.csv", "output file path")
flag.Parse()
f, err := os.Open(*in)
//Logging error if any in opening the input csv file
if err != nil {
log.Fatal(err)
}
defer f.Close()
// read csv values using csv.Reader
csvReader := csv.NewReader(f)
data, err := csvReader.ReadAll()
if err != nil {
log.Fatal(err)
}
// convert records to array of structs
input_list := createList(data)
//fmt.Printf("%+v\n", input_list)
scaled_list := scaleList(input_list)
//println()
//fmt.Printf("%+v\n", scaled_list)
sum := 0.0
//Row means in alpha
var alpha []float64
count := 0
for _, l := range scaled_list {
count = 0
sum = 0.0
for _, l2 := range l {
if math.IsNaN(l2) {
continue
}
count = count + 1
sum = sum + l2
}
alpha = append(alpha, sum/float64(count))
}
//Column means in beta
var beta []float64
count = 0
sum = 0.0
for i, _ := range scaled_list[0] {
count = 0
sum = 0.0
for j, _ := range scaled_list {
if math.IsNaN(scaled_list[j][i]) {
continue
}
sum = sum + scaled_list[j][i]
count = count + 1
}
beta = append(beta, sum/float64(count))
}
//Row standard deviations
var tao []float64
for j, row := range scaled_list {
count = 0
sum = 0.0
for _, elem := range row {
if math.IsNaN(elem) {
continue
}
count = count + 1
sum = sum + (elem-alpha[j])*(elem-alpha[j])
}
tao = append(tao, math.Sqrt(sum/float64(count)))
}
//Column Standard Deviations
var gamma []float64
for i, _ := range scaled_list[0] {
count = 0
sum = 0.0
for j, _ := range scaled_list {
if math.IsNaN(scaled_list[j][i]) {
continue
}
count = count + 1
sum = sum + (scaled_list[j][i]-beta[i])*(scaled_list[j][i]-beta[i])
}
gamma = append(gamma, math.Sqrt(sum/float64(count)))
}
var delta_alpha []float64
var delta_beta []float64
var delta_gamma []float64
var delta_tao []float64
heuristic1 := calculateHeuristic(delta_alpha, delta_beta, delta_gamma, delta_tao)
heuristic2 := 0.0
for {
//println(heuristic1)
delta_alpha = getAlphaChange(scaled_list, tao, gamma)
//fmt.Println(delta_alpha)
//For debugging
delta_beta = getBetaChange(scaled_list, tao, gamma)
//fmt.Println(delta_beta)
//For debugging
delta_gamma = getGammaChange(scaled_list)
//fmt.Println(delta_gamma)
//For debugging
delta_tao = getTaoChange(scaled_list)
//fmt.Println(delta_tao)
//For debugging
if heuristic1 != 0 && heuristic1 != heuristic2 {
scaled_list = rescale(scaled_list, alpha, beta, tao, gamma)
heuristic1 = heuristic2
heuristic2 = calculateHeuristic(delta_alpha, delta_beta, delta_gamma, delta_tao)
} else {
break
}
//fmt.Printf("%+v\n", scaled_list)
//println(heuristic1)
}
var string_scaled_list [][]string
for _, row := range scaled_list {
var temp []string
for _, item := range row {
temp = append(temp, strconv.FormatFloat(item, 'g', 8, 64))
}
string_scaled_list = append(string_scaled_list, temp)
}
file, err := os.Create(*o)
if err != nil {
log.Println("Cannot create CSV file:", err)
}
defer file.Close()
writer := csv.NewWriter(file)
err = writer.WriteAll(string_scaled_list)
if err != nil {
log.Println("Cannot write to CSV file:", err)
}
}