-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest.py
66 lines (60 loc) · 3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
import tensorflow as tf
from sklearn import metrics
from data_loader import get_data_loader_by_name
from models import get_model_class_by_name
from utils import yaml_utils
from utils.config_utils import get_config
def evaluate_model(args):
tf.set_random_seed(19)
tf_config = tf.ConfigProto(allow_soft_placement=True)
tf_config.gpu_options.allow_growth = True
with tf.Session(config=tf_config) as sess:
print('导入数据')
dataset_info = yaml_utils.read(args['dataset']['path'])
dictionary = yaml_utils.read(dataset_info['dictionary_path'])
print('导入数据字典完成')
reverse_dictionary = yaml_utils.read(dataset_info['reverse_dictionary_path'])
print('导入反向字典完成')
if 'embedding_path' in dataset_info.keys():
embedding = np.array(yaml_utils.read(dataset_info['embedding_path']), dtype=np.float32)
else:
embedding = None
print('导入词向量完成')
test_dataset = yaml_utils.read(dataset_info['eval_path'])
print('导入测试数据完成')
print('导入完成')
data_loader = get_data_loader_by_name(args['dataset']['data_generator'])
eval_data_generator = data_loader(dictionary, False, test_dataset, batch_size=args['batch_size'],
seq_length=args['dataset']['seq_length'],
reverse_dictionary=reverse_dictionary)
eval_data_generator.get_reverse_dictionary()
model_class = get_model_class_by_name(args['model']['name'])
model = model_class(sess=sess, train_generator=None, eval_generator=eval_data_generator,
embedding=embedding, **dataset_info, **args['dataset'], **args['model'], **args)
result, labels = model.test()
# yaml_utils.write(args['model']['checkpoint_dir'] + '/' + args['dataset']['dataset_name'] + '/' +
# args['model']['name'] + '/' + args['tag'] + '/' + 'best_result.yaml', result)
print('评估')
print(metrics.classification_report(labels, result, target_names=eval_data_generator.get_labels()))
print('混淆矩阵')
cm = metrics.confusion_matrix(labels, result)
print(cm)
if __name__ == '__main__':
# config = get_config('adversarial/aclImdb_rnn')
# config = get_config('adversarial/aclImdb_cnn')
# config = get_config('adversarial/cnews_rnn')
# config = get_config('adversarial/cnews_cnn')
# config = get_config('adversarial/cnews_voc_cnn')
# config = get_config('adversarial/cnews_voc_rnn')
# config = get_config('cnn/aclImdb')
# config = get_config('cnn/cnews')
# config = get_config('cnn/cnews_voc')
config = get_config('rnn/aclImdb')
# config = get_config('rnn/cnews')
# config = get_config('rnn/cnews_voc')
# config['tag'] = 'base'
# config['tag'] = 'embedding_untrainable'
config['tag'] = 'lstm'
config['model']['rnn_type'] = 'lstm'
evaluate_model(config)