-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathrun_nucleotide_transformer.sh
61 lines (58 loc) · 2.25 KB
/
run_nucleotide_transformer.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/bin/bash
#SBATCH --get-user-env # Retrieve the users login environment
#SBATCH -t 96:00:00 # Time limit (hh:mm:ss)
#SBATCH --mem=64G # RAM
#SBATCH --gres=gpu:2 # Number of GPUs
#SBATCH --ntasks-per-node=2
#SBATCH --cpus-per-task=4
#SBATCH -N 1 # Number of nodes
#SBATCH --requeue # Requeue job if it fails
#SBATCH --open-mode=append # Do not overwrite logs
# Setup environment
cd ../ || exit # Go to the root directory of the repo
source setup_env.sh
export HYDRA_FULL_ERROR=1
# Expected args:
# - CONFIG_PATH
# - PRETRAINED_PATH
# - DISPLAY_NAME
# - MODEL
# - MODEL_NAME
# - CONJOIN_TRAIN_DECODER
# - CONJOIN_TEST
# - TASK
# - LR
# - BATCH_SIZE
# - RC_AUG
# Run script
WANDB_NAME="${DISPLAY_NAME}_LR-${LR}_BATCH_SIZE-${BATCH_SIZE}_RC_AUG-${RC_AUG}"
for seed in $(seq 1 10); do
HYDRA_RUN_DIR="./outputs/downstream/nt_cv10_ep20/${TASK}/${DISPLAY_NAME}_LR-${LR}_BATCH_SIZE-${BATCH_SIZE}_RC_AUG-${RC_AUG}/seed-${seed}"
mkdir -p "${HYDRA_RUN_DIR}"
echo "*****************************************************"
echo "Running NT model: ${DISPLAY_NAME}, TASK: ${TASK}, LR: ${LR}, BATCH_SIZE: ${BATCH_SIZE}, RC_AUG: ${RC_AUG}, SEED: ${seed}"
python -m train \
experiment=hg38/nucleotide_transformer \
callbacks.model_checkpoint_every_n_steps.every_n_train_steps=5000 \
dataset.dataset_name="${TASK}" \
dataset.train_val_split_seed=${seed} \
dataset.batch_size=${BATCH_SIZE} \
dataset.rc_aug="${RC_AUG}" \
+dataset.conjoin_test="${CONJOIN_TEST}" \
model="${MODEL}" \
model._name_="${MODEL_NAME}" \
+model.config_path="${CONFIG_PATH}" \
+model.conjoin_test="${CONJOIN_TEST}" \
+decoder.conjoin_train="${CONJOIN_TRAIN_DECODER}" \
+decoder.conjoin_test="${CONJOIN_TEST}" \
optimizer.lr="${LR}" \
train.pretrained_model_path="${PRETRAINED_PATH}" \
trainer.max_epochs=20 \
wandb.group="downstream/nt_cv10_ep20" \
wandb.job_type="${TASK}" \
wandb.name="${WANDB_NAME}" \
wandb.id="nt_cv10_ep-20_${TASK}_${WANDB_NAME}_seed-${seed}" \
+wandb.tags=\["seed-${seed}"\] \
hydra.run.dir="${HYDRA_RUN_DIR}"
echo "*****************************************************"
done