forked from mathematical-systems/clml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom-forest.cl
362 lines (312 loc) · 14.6 KB
/
random-forest.cl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
(defpackage :random-forest
(:use :cl
:hjs.learn.read-data
:decision-tree)
(:import-from :decision-tree
#:make-variable-index-hash
#:sum-up
#:column-name->column-number
#:total
#:make-split-predicate
#:sum-up-results
#:gini-index
#:entropy
#:mean
#:variance
#:whole-row-numbers-list
#:split
#:delta-gini
#:delta-entropy
#:delta-variance)
(:export
#:make-random-forest
#:make-regression-forest
#:predict-forest
#:importance
#:predict-regression-forest
#:forest-validation
#:regression-forest-validation))
(in-package :random-forest)
(defun make-bootstrap-sample (unspecialized-dataset)
(let* ((data-vector (dataset-points unspecialized-dataset))
(n (array-dimension data-vector 0))
(new-data-vector (make-array n)))
(loop
for i below n
do (setf (svref new-data-vector i) (svref data-vector (random n))))
new-data-vector))
(defun make-explanatory-variable-index-list (variable-index-hash objective-column-index)
(let* ((n (hash-table-count variable-index-hash))
(m (floor (sqrt n)))
(all-var-index-list (loop for i below n collect i))
(ex-var-index-list (remove objective-column-index all-var-index-list))
(sample-number-list (algorithm-s m (1- n))))
(loop
for i in sample-number-list
collect (nth i ex-var-index-list))))
(defun algorithm-s (n max)
"Knuth's random sampling algorithm."
(loop
for seen from 0
when (< (* (- max seen) (random 1.0)) n)
collect seen and do (decf n)
until (zerop n)))
(defun make-split-criterion-list-for-rf (data-vector variable-index-hash objective-column-index)
(let ((explanatory-variable-index-list (make-explanatory-variable-index-list variable-index-hash objective-column-index)))
(loop with split-criterion-list = '()
for var-name being the hash-keys in variable-index-hash
using (hash-value j)
when (member j explanatory-variable-index-list) do
(let* ((v (loop for line across (the simple-array data-vector)
collect (svref line j)))
(w (remove-duplicates v))) ;remark
;;(assert (<= 2 (length w)))
(if (= (length w) 2)
(push (cons var-name (car w)) split-criterion-list)
(dolist (attribute w)
(push (cons var-name attribute) split-criterion-list))))
finally (return split-criterion-list))))
(defun select-best-splitting-attribute-for-rf (data-vector variable-index-hash
list-of-row-numbers split-criterion-list
objective-column-index &key (test #'delta-gini) (epsilon 0))
(let* ((v (mapcar #'(lambda (x) (list x (funcall test data-vector variable-index-hash list-of-row-numbers (car x) (cdr x) objective-column-index)))
split-criterion-list))
(w (reduce #'(lambda (x y) (if (<= (second x) (second y))
y
x)) v)))
(if (<= (second w) epsilon)
(values nil '())
(values (car w) (* (length list-of-row-numbers) (second w))))))
(defun make-root-node-for-rf (data-vector variable-index-hash objective-column-index column-list &key (test #'delta-gini) (epsilon 0))
(let ((initial-row-numbers-list (whole-row-numbers-list data-vector)))
(multiple-value-bind (best-split-criterion split-criterion-list)
(select-best-splitting-attribute-for-rf
data-vector variable-index-hash initial-row-numbers-list
(make-split-criterion-list-for-rf data-vector variable-index-hash objective-column-index) objective-column-index :test test :epsilon epsilon)
(let ((result-ratio (sum-up-results data-vector initial-row-numbers-list objective-column-index)))
(multiple-value-bind (right left) (split data-vector variable-index-hash initial-row-numbers-list
(car best-split-criterion) (cdr best-split-criterion))
(list (list best-split-criterion split-criterion-list)
result-ratio
(list right left)
variable-index-hash
objective-column-index
column-list
))))))
(defun make-new-right-node-for-rf (data-vector variable-index-hash objective-column-index tree-node
&key (test #'delta-gini) (epsilon 0))
(if (null (caar tree-node))
'()
(let ((right-low-numbers-list (first (third tree-node))))
(multiple-value-bind (best-split-criterion split-criterion-list)
(select-best-splitting-attribute-for-rf
data-vector variable-index-hash right-low-numbers-list
(make-split-criterion-list-for-rf data-vector variable-index-hash objective-column-index)
objective-column-index :test test :epsilon epsilon)
(let ((result-ratio (sum-up-results data-vector right-low-numbers-list
objective-column-index)))
(multiple-value-bind (right left) (split data-vector variable-index-hash right-low-numbers-list
(car best-split-criterion) (cdr best-split-criterion))
(list (list best-split-criterion split-criterion-list)
result-ratio
(list right left))))))))
(defun make-new-left-node-for-rf (data-vector variable-index-hash objective-column-index tree-node
&key (test #'delta-gini) (epsilon 0))
(if (null (caar tree-node))
'()
(let ((left-low-numbers-list (second (third tree-node))))
(multiple-value-bind (best-split-criterion split-criterion-list)
(select-best-splitting-attribute-for-rf
data-vector variable-index-hash left-low-numbers-list
(make-split-criterion-list-for-rf data-vector variable-index-hash objective-column-index)
objective-column-index :test test :epsilon epsilon)
(let ((result-ratio (sum-up-results data-vector left-low-numbers-list
objective-column-index)))
(multiple-value-bind (right left) (split data-vector variable-index-hash left-low-numbers-list
(car best-split-criterion) (cdr best-split-criterion))
(list (list best-split-criterion split-criterion-list)
result-ratio
(list right left))))))))
(defun make-decision-tree-for-rf (data-vector variable-index-hash objective-column-index tree-node
&key (test #'delta-gini) (epsilon 0))
(if (null (caar tree-node))
(list (second tree-node) (car (third tree-node)))
(list tree-node
(make-decision-tree-for-rf data-vector variable-index-hash objective-column-index
(make-new-right-node-for-rf data-vector variable-index-hash objective-column-index
tree-node :test test :epsilon epsilon)
:test test :epsilon epsilon)
(make-decision-tree-for-rf data-vector variable-index-hash objective-column-index
(make-new-left-node-for-rf data-vector variable-index-hash objective-column-index
tree-node :test test :epsilon epsilon)
:test test :epsilon epsilon))))
(defun print-random-decision-tree (unspecialized-dataset objective-column-name &key (test #'delta-gini) (stream t))
"for test"
(let ((tree (make-random-decision-tree unspecialized-dataset objective-column-name :test test)))
(print-decision-tree tree stream)))
(defun make-random-decision-tree (unspecialized-dataset objective-column-name &key (test #'delta-gini))
(let* ((data-vector (make-bootstrap-sample unspecialized-dataset))
(variable-index-hash (make-variable-index-hash unspecialized-dataset))
(objective-column-index (column-name->column-number variable-index-hash objective-column-name))
(column-list (loop
with dim-vector = (dataset-dimensions unspecialized-dataset)
for i below (length dim-vector)
if (/= i objective-column-index)
collect (dimension-name (aref dim-vector i))))
(root (make-root-node-for-rf data-vector variable-index-hash objective-column-index column-list
:test test)))
(make-decision-tree-for-rf data-vector variable-index-hash objective-column-index root :test test)))
#-fork-future
(defun make-random-forest (unspecialized-dataset objective-column-name &key (test #'delta-gini) (tree-number 500))
(let ((forest (make-array tree-number)))
(dotimes (i tree-number forest)
(setf (svref forest i) (make-random-decision-tree unspecialized-dataset objective-column-name :test test)))))
#+fork-future
(defun make-random-forest (unspecialized-dataset objective-column-name &key (test #'delta-gini) (tree-number 500))
(let ((forest (make-array tree-number)))
(let ((futures
(loop for nworker below hjs.learn.vars:*workers*
collect
(fork-future:future
(loop for i from nworker below tree-number by hjs.learn.vars:*workers*
do
(setf (svref forest i)
(make-random-decision-tree unspecialized-dataset objective-column-name :test test)))
forest))))
(mapc 'fork-future:touch futures)
(loop for nworker below hjs.learn.vars:*workers*
do
(loop for i from nworker below tree-number by hjs.learn.vars:*workers*
do
(setf (svref forest i)
(aref (fork-future:touch (elt futures nworker)) i)))))
forest))
(defun predict-forest (query-vector unspecialized-dataset forest)
(car (reduce #'(lambda (x y) (if (<= (cdr x) (cdr y))
y
x))
(sum-up (loop
for i below (length forest)
collect (predict-decision-tree query-vector unspecialized-dataset (svref forest i)))))))
(defun forest-validation (validation-dataset objective-column-name forest)
(let* ((variable-index-hash (make-variable-index-hash validation-dataset))
(k (column-name->column-number variable-index-hash objective-column-name))
(validation-data-vector (dataset-points validation-dataset)))
(sum-up (loop
for i below (length validation-data-vector)
collect (cons (predict-forest (svref validation-data-vector i) validation-dataset forest)
(svref (svref validation-data-vector i) k))))))
(defun make-random-regression-tree (unspecialized-dataset objective-column-name)
(let* ((data-vector (make-bootstrap-sample unspecialized-dataset))
(variable-index-hash (make-variable-index-hash unspecialized-dataset))
(objective-column-index (column-name->column-number variable-index-hash objective-column-name))
(column-list (loop
with dim-vector = (dataset-dimensions unspecialized-dataset)
for i below (length dim-vector)
if (/= i objective-column-index)
collect (dimension-name (aref dim-vector i))))
(root (make-root-node-for-rf data-vector variable-index-hash objective-column-index column-list
:test #'delta-variance)))
(make-regression-tree-for-rf data-vector variable-index-hash objective-column-index root :test #'delta-variance)))
(defun make-regression-tree-for-rf (data-vector variable-index-hash objective-column-index tree-node
&key (test #'delta-variance) (epsilon 0))
(if (null (caar tree-node))
(list (second tree-node) (car (third tree-node)))
(list tree-node
(make-regression-tree-for-rf data-vector variable-index-hash objective-column-index
(make-new-right-node-for-rf data-vector variable-index-hash objective-column-index tree-node)
:test test :epsilon epsilon)
(make-regression-tree-for-rf data-vector variable-index-hash objective-column-index
(make-new-left-node-for-rf data-vector variable-index-hash objective-column-index tree-node)
:test test :epsilon epsilon))))
(defun print-random-regression-tree (unspecialized-dataset objective-column-name &key (stream t))
"for test"
(let ((tree (make-random-regression-tree unspecialized-dataset objective-column-name)))
(print-regression-tree tree stream)))
#-fork-future
(defun make-regression-forest (unspecialized-dataset objective-column-name &key (tree-number 500))
(let ((forest (make-array tree-number)))
(dotimes (i tree-number forest)
(setf (svref forest i) (make-random-regression-tree unspecialized-dataset objective-column-name)))))
#+fork-future
(defun make-regression-forest (unspecialized-dataset objective-column-name &key (tree-number 500))
(let ((forest (make-array tree-number)))
(let ((futures
(loop for nworker below hjs.learn.vars:*workers*
collect
(fork-future:future
(loop for i from nworker below tree-number by hjs.learn.vars:*workers*
do
(setf (svref forest i)
(make-random-regression-tree unspecialized-dataset objective-column-name)))
forest))))
(mapc 'fork-future:touch futures)
(loop for nworker below hjs.learn.vars:*workers*
do
(loop for i from nworker below tree-number by hjs.learn.vars:*workers*
do
(setf (svref forest i)
(aref (fork-future:touch (elt futures nworker)) i)))))
forest))
(defun predict-regression-forest (query-vector unspecialized-dataset forest)
(/ (loop
for i below (length forest)
sum (predict-regression-tree query-vector unspecialized-dataset (svref forest i)))
(length forest)))
(defun regression-forest-validation (validation-dataset objective-column-name regression-forest)
(let* ((variable-index-hash (make-variable-index-hash validation-dataset))
(k (column-name->column-number variable-index-hash objective-column-name))
(validation-data-vector (dataset-points validation-dataset))
(n (length validation-data-vector)))
(loop
for i below n
sum (expt (- (predict-regression-forest (svref validation-data-vector i) validation-dataset regression-forest)
(svref (svref validation-data-vector i) k))
2) into s
finally (return (/ s n)))))
(defun sum-up-decrease-gini (rf-tree column)
(if (< 2 (length rf-tree))
(let ((node-var (caaaar rf-tree))
(value (cadaar rf-tree)))
(+ (if (string= column node-var)
value
0.0d0)
(sum-up-decrease-gini (second rf-tree) column)
(sum-up-decrease-gini (third rf-tree) column)))
0.0d0))
(defun sum-up-var (rf-tree column)
(if (< 2 (length rf-tree))
(let ((node-var (caaaar rf-tree)))
(+ (if (string= column node-var)
1
0)
(sum-up-var (second rf-tree) column)
(sum-up-var (third rf-tree) column)))
0))
(defun importance (forest)
(format t "~%")
(loop
with column-list = (nth 5 (first (aref forest 0)))
for column in column-list
as sum-gini = (loop
for tree across forest
sum (sum-up-decrease-gini tree column))
do (format t "~a ~a~%" column (/ sum-gini (length forest)))))
(defun var-used (forest)
(format t "~%")
(loop
with column-list = (nth 5 (first (aref forest 0)))
for column in column-list
as n = (loop
for tree across forest
sum (sum-up-var tree column))
do (format t "~a ~a~%" column n)))
(defun count-tree-node (rf-tree)
(if (>= 2 (length rf-tree))
1
(+ (count-tree-node (second rf-tree))
(count-tree-node (third rf-tree)))))
(defun treesize (forest)
(loop
for tree across forest
collect (count-tree-node tree)))