forked from theekshanadis/biosignalGANs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline.py
200 lines (152 loc) · 6.83 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import torch.nn.functional as F
from torch import nn
import torchaudio
import math
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd import Variable
import warnings
plt.style.use('ggplot')
warnings.filterwarnings("ignore", category=UserWarning)
class Dataset(torch.utils.data.Dataset):
def __init__(self, indexes, test=False):
self.indexes = indexes
def normalize(self, x):
return -1 + 2*(x - np.min(x))/(np.max(x) - np.min(x))
def normalize_(self, x):
return (x - np.min(x))/(np.max(x) - np.min(x))
def __getitem__(self, index):
x = np.load(self.indexes[index]).astype(float)[0, ]
x = torch.from_numpy(x).unsqueeze(dim=0).float()
stft_f = torchaudio.transforms.Spectrogram(n_fft=32, hop_length=11)
x_spec = stft_f(x)
spec_mag, spec_ang = x_spec.abs(), x_spec.angle()
return spec_mag
def __len__(self):
return self.indexes.shape[0]
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.z = 100
self.generate = nn.Sequential(
nn.ConvTranspose2d(100, 256, kernel_size=(2, 4), stride=1, padding=0),
nn.InstanceNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.ConvTranspose2d(256, 256, kernel_size=(2, 4), stride=2, padding=(0, 1)),
nn.InstanceNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.ConvTranspose2d(256, 128, kernel_size=(2, 4), stride=2, padding=(0, 1)),
nn.InstanceNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.ConvTranspose2d(128, 1, kernel_size=(3, 5), stride=2, padding=(0, 1))
)
def forward(self, x):
return self.generate(x.view(-1, 100, 1, 1))
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.discrim = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=(3, 5), stride=2, padding=(0, 1)),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(32, 128, kernel_size=(2, 4), stride=2, padding=(0, 1)),
nn.InstanceNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, kernel_size=(2, 4), stride=2, padding=(0, 1)),
nn.InstanceNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 1, kernel_size=(2, 4), stride=2, padding=0)
)
def forward(self, x):
return self.discrim(x).flatten(start_dim=1).sigmoid()
# data loader
import glob
data = np.array(glob.glob('./Data/D2/*'))
X_train, X_test = train_test_split(data, test_size=0.01, random_state=42)
print('train-on', X_train.shape, 'test-on', X_test.shape)
# data loaders
train_dataset = Dataset(X_train)
test_dataset = Dataset(X_test)
params_te = {'batch_size': 48,
'shuffle': False,
'num_workers': 8}
training_generator = torch.utils.data.DataLoader(train_dataset, **params_te)
validation_generator = torch.utils.data.DataLoader(test_dataset, **params_te)
# create ./Loss/ for save the loss-variation.
# model
z = 256
DIR = 'T3/V1' # create this directory before runing the code.
generator = Generator()
discriminator = Discriminator()
code = 'GAN-D2-{}-{:d}'.format(DIR.replace('/','-') ,z)
generator, discriminator = generator.cuda(), discriminator.cuda()
adverserial_loss = nn.BCELoss()
optimizer_G = torch.optim.Adam(generator.parameters(), lr=0.001)
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=0.0001)
try:
generator.load_state_dict(torch.load('./Models/g_{}.tm'.format(code)))
optimizer_G.load_state_dict(torch.load('./Models/g_opt_{}.tm'.format(code)))
discriminator.load_state_dict(torch.load('./Models/d_{}.tm'.format(code)))
optimizer_D.load_state_dict(torch.load('./Models/d_opt_{}.tm'.format(code)))
print('loaded-saved: {}'.format(code))
except Exception as e:
print(e)
print('# of parameters (gen):', sum(p.numel() for p in generator.parameters() if p.requires_grad))
print('# of parameters (disc):', sum(p.numel() for p in discriminator.parameters() if p.requires_grad))
min_recons = np.inf
generator_loss, discriminator_loss = [], []
for epoch in range(400):
print('Epoch---{:d}---{}'.format(epoch, code))
traind_loss, traing_loss = [], []
for i, x in enumerate(training_generator):
# adverserial ground-truths
valid = Variable(torch.ones((x.shape[0], 1)), requires_grad=False).cuda()
fake = Variable(torch.zeros((x.shape[0], 1)), requires_grad=False).cuda()
# ---- Train Generator ------
optimizer_G.zero_grad()
z = Variable(torch.from_numpy(np.random.normal(0, 1, (x.shape[0], generator.z)))).float()
x_recons = generator(z.cuda())
g_loss = adverserial_loss(discriminator(x_recons), valid)
g_loss.backward()
optimizer_G.step()
# ---- Train Discriminator
optimizer_D.zero_grad()
real_loss = adverserial_loss(discriminator(x.cuda()), valid)
fake_loss = adverserial_loss(discriminator(x_recons.detach()), fake)
d_loss = 0.5 * (real_loss + fake_loss)
d_loss.backward()
optimizer_D.step()
traind_loss.append(d_loss.item())
traing_loss.append(g_loss.item())
print('\r[{:4d}] loss: generator: {:.4f} discriminator: {:.4f}'.format(i, g_loss.item(), d_loss.item()), end='')
# save some images
if i == 2000:
dirname = './SIN/{}/f{:d}'.format(DIR, epoch)
import os
try:
os.mkdir(dirname)
except FileExistsError:
pass
ids = np.random.choice(48, 24, replace=True)
for i, id_ in enumerate(ids):
plt.imshow(x_recons[id_, ][0, ].cpu().detach().numpy())
plt.savefig('{}/f_{:d}.png'.format(dirname, i))
plt.clf()
plt.close()
torch.save(x_recons.cpu(), '{}/rec_.tm'.format(dirname))
print('\n--------Train generator: {:.4f} discriminator: {:.4f}'.format(np.mean(traing_loss), np.mean(traind_loss)))
generator_loss.append(np.mean(traing_loss))
discriminator_loss.append(np.mean(traind_loss))
torch.save(generator.state_dict(), './Models/generator-{}.tm'.format(code))
torch.save(discriminator.state_dict(), './Models/discriminator-{}.tm'.format(code))
torch.save(optimizer_D.state_dict(), './Models/opt_d-{}.tm'.format(code))
torch.save(optimizer_G.state_dict(), './Models/opt_g-{}.tm'.format(code))
_ = plt.figure(figsize=(6, 3))
plt.plot(range(epoch+1), generator_loss)
plt.plot(range(epoch+1), discriminator_loss)
plt.legend(['generator', 'discriminator'])
plt.ylabel('loss')
plt.savefig('./Loss/loss-{}.png'.format(code))
plt.close()
plt.clf()