-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnatural_tuples.py
298 lines (252 loc) · 9.96 KB
/
natural_tuples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import csv
from datetime import datetime
from datasets import load_dataset
import random
import time
random.seed(time.time())
def get_dates(date_str):
"""
This function takes a date string in the format "MM/DD/YYYY"
and returns a datetime object.
"""
date_range = date_str.split("-")
if len(date_range) != 2:
raise ValueError("Input date string is not in the correct format 'MM/DD/YYYY-MM/DD/YYYY' or 'MM/DD/YY-MM/DD/YY'")
date1_str = date_range[0].strip()
date2_str = date_range[1].strip()
# Check the length of the year part to determine the format
year_length = len(date1_str.split("/")[-1])
if year_length == 2:
date_format = '%m/%d/%y'
elif year_length == 4:
date_format = '%m/%d/%Y'
else:
raise ValueError("Year part of the date is not in a recognized format")
date1 = datetime.strptime(date1_str, date_format)
date2 = datetime.strptime(date2_str, date_format)
return date1, date2
from functools import lru_cache
@lru_cache(maxsize=None)
def scorer(date):
#get month day and year from date time object
month = date.month
day = date.day
year = date.year
#month, day, year = map(int, date.split('/'))
if year < 100: # Assuming two-digit years are 2000s
year += 2000
score = year * 10000 + month * 100 + day * 1
return score
def is_similar(start_date1, end_date1, start_date2, end_date2):
if abs(start_date1.year-start_date2.year) > 2:
return False
# Check for overlap directly using datetime comparisons
return (start_date2 <= start_date1 <= end_date2) or (start_date2 <= end_date1 <= end_date2)
# Load data from CSV files into dictionaries
def load_data(file_path, data_dict):
with open(file_path, 'r') as file:
reader = csv.reader(file)
for row in reader:
if "Computed" in row or "xx" in row[1]:
continue
data_dict[row[0]] = row[1]
def generate_hash_map(data_dict):
hash_map = {}
for key, date_str in data_dict.items():
start_date, end_date = get_dates(date_str)
hash_map[key] = (scorer(start_date), scorer(end_date))
return hash_map
# File paths for your CSV files
seasons_file = 'csv/seasons.csv'
dates_file = 'csv/dates_updated.csv'
lastx_file = 'csv/lastx_updated.csv'
relatives_dates_file = 'csv/relatives_dates_updated.csv'
months_file = 'csv/months.csv'
# Initialize dictionaries
season_dict = {}
dates_dict = {}
lastx_dict = {}
relativedate_dict = {}
monthsdict = {}
# Load data into dictionaries while skipping unwanted rows
load_data(seasons_file, season_dict)
load_data(dates_file, dates_dict)
load_data(lastx_file, lastx_dict)
load_data(relatives_dates_file, relativedate_dict)
load_data(months_file, monthsdict)
# do the above but first shuffle the dictionaries
season_keys = list(season_dict.keys())
random.shuffle(season_keys)
date_keys = list(dates_dict.keys())
random.shuffle(date_keys)
# Precompute and hash scores
season_hash_map = generate_hash_map(season_dict)
date_hash_map = generate_hash_map(dates_dict)
natural_language_tuples = set()
i = 0
# Pre-filter date_keys to avoid checking for '/' in the inner loop
filtered_date_keys = [date for date in date_keys if "/" not in date]
# Create a list of start and end scores for seasons and dates
season_scores = [(season, *season_hash_map[season]) for season in season_keys]
date_scores = [(date, *date_hash_map[date]) for date in filtered_date_keys]
#repeat for lastx and seasons
lastx_keys = list(lastx_dict.keys())
random.shuffle(lastx_keys)
lastx_hash_map = generate_hash_map(lastx_dict)
#seasons and lastx
for season in season_keys:
start_score1, end_score1 = season_hash_map[season]
for lastx in lastx_keys:
start_score2, end_score2 = lastx_hash_map[lastx]
if (start_score2 <= start_score1 <= end_score2) or (start_score2 <= end_score1 <= end_score2):
natural_language_tuples.add((season, lastx))
# print(season, lastx)
i += 1
break
if i % 1000 == 0:
print(i)
print("Season to lastx tuples generated. Size is now", len(natural_language_tuples))
#seasons and relatives
relatives_keys = list(relativedate_dict.keys())
#random.shuffle(relatives_keys)
relatives_hash_map = generate_hash_map(relativedate_dict)
for relatives in relatives_keys:
start_score1, end_score1 = relatives_hash_map[relatives]
for season in season_keys:
start_score2, end_score2 = season_hash_map[season]
if (start_score2 <= start_score1 <= end_score2) or (start_score2 <= end_score1 <= end_score2):
natural_language_tuples.add((relatives, season))
# print(relatives, season)
i += 1
break
if i % 1000 == 0:
print(i)
print("seasons to relatives tuples generated. Size is now", len(natural_language_tuples))
#seasons to months
months_keys = list(monthsdict.keys())
random.shuffle(months_keys)
months_hash_map = generate_hash_map(monthsdict)
for month in months_keys:
start_score1, end_score1 = months_hash_map[month]
for season in season_keys:
start_score2, end_score2 = season_hash_map[season]
if (start_score2 <= start_score1 <= end_score2) or (start_score2 <= end_score1 <= end_score2):
natural_language_tuples.add((month, season))
# print(month, season)
i += 1
break
if i % 1000 == 0:
print(i)
print("seasons to months tuples generated. Size is now", len(natural_language_tuples))
#relatives to dates
for relatives in relatives_keys:
start_score1, end_score1 = relatives_hash_map[relatives]
for date in date_keys:
start_score2, end_score2 = date_hash_map[date]
if (start_score2 <= start_score1 <= end_score2) or (start_score2 <= end_score1 <= end_score2):
natural_language_tuples.add((relatives, date))
# print(relatives, date)
i += 1
break
if i % 1000 == 0:
print(i)
#lastx to dates
for lastx in lastx_keys:
start_score1, end_score1 = lastx_hash_map[lastx]
for date in date_keys:
start_score2, end_score2 = date_hash_map[date]
if (start_score2 <= start_score1 <= end_score2) or (start_score2 <= end_score1 <= end_score2):
natural_language_tuples.add((lastx, date))
# print(lastx, date)
i += 1
break
if i % 1000 == 0:
print(i)
#months to dates
for month in months_keys:
start_score1, end_score1 = months_hash_map[month]
for date in date_keys:
start_score2, end_score2 = date_hash_map[date]
if (start_score2 <= start_score1 <= end_score2) or (start_score2 <= end_score1 <= end_score2):
natural_language_tuples.add((month, date))
# print(month, date)
i += 1
break
if i % 1000 == 0:
print(i)
#seasons to dates
for season in season_keys:
start_score1, end_score1 = season_hash_map[season]
for date in date_keys:
start_score2, end_score2 = date_hash_map[date]
if (start_score2 <= start_score1 <= end_score2) or (start_score2 <= end_score1 <= end_score2):
natural_language_tuples.add((season, date))
# print(season, date)
i += 1
break
if i % 1000 == 0:
print(i)
#lastx to months
for lastx in lastx_keys:
start_score1, end_score1 = lastx_hash_map[lastx]
for month in months_keys:
start_score2, end_score2 = months_hash_map[month]
if (start_score2 <= start_score1 <= end_score2) or (start_score2 <= end_score1 <= end_score2):
natural_language_tuples.add((lastx, month))
# print(lastx, month)
i += 1
break
if i % 1000 == 0:
print(i)
print("lastx to months tuples generated. Size is now", len(natural_language_tuples))
#lastx to seasons
for lastx in lastx_keys:
start_score1, end_score1 = lastx_hash_map[lastx]
for season in season_keys:
start_score2, end_score2 = season_hash_map[season]
if (start_score2 <= start_score1 <= end_score2) or (start_score2 <= end_score1 <= end_score2):
natural_language_tuples.add((lastx, season))
# print(lastx, season)
i += 1
break
if i % 1000 == 0:
print(i)
print("lastx to seasons tuples generated. Size is now", len(natural_language_tuples))
#relatives to months
for relatives in relatives_keys:
start_score1, end_score1 = relatives_hash_map[relatives]
for month in months_keys:
start_score2, end_score2 = months_hash_map[month]
if (start_score2 <= start_score1 <= end_score2) or (start_score2 <= end_score1 <= end_score2):
natural_language_tuples.add((relatives, month))
# print(relatives, month)
i += 1
break
if i % 1000 == 0:
print(i)
print("relatives to months tuples generated. Size is now", len(natural_language_tuples))
#relatives to seasons
for relatives in relatives_keys:
start_score1, end_score1 = relatives_hash_map[relatives]
for season in season_keys:
start_score2, end_score2 = season_hash_map[season]
if (start_score2 <= start_score1 <= end_score2) or (start_score2 <= end_score1 <= end_score2):
natural_language_tuples.add((relatives, season))
# print(relatives, season)
i += 1
break
if i % 1000 == 0:
print(i)
#print a couple of samples from the tuples set
print("Random samples from the tuples set:")
#remember it is a set not a list
for i, tup in enumerate(random.sample(sorted(natural_language_tuples), 20)):
print(tup)
#final length:
print("Final length of the natural language tuples set is", len(natural_language_tuples))
#Save the natural language tuples set to a file at csv/natural_language_tuples.csv with delimiter '|'
with open('csv/natural_language_tuples.csv', 'a', newline='') as file:
writer = csv.writer(file, delimiter='|')
writer.writerow(['Value', 'Computed'])
for tup in natural_language_tuples:
writer.writerow(tup)