forked from floodyberry/scrypt-jane
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscrypt-jane.c
246 lines (204 loc) · 7.63 KB
/
scrypt-jane.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
scrypt-jane by Andrew M, https://github.com/floodyberry/scrypt-jane
Public Domain or MIT License, whichever is easier
*/
#include <string.h>
#include "scrypt-jane.h"
#include "code/scrypt-jane-portable.h"
#include "code/scrypt-jane-hash.h"
#include "code/scrypt-jane-romix.h"
#include "code/scrypt-jane-test-vectors.h"
#define scrypt_maxNfactor 30 /* (1 << (30 + 1)) = ~2 billion */
#if (SCRYPT_BLOCK_BYTES == 64)
#define scrypt_r_32kb 8 /* (1 << 8) = 256 * 2 blocks in a chunk * 64 bytes = Max of 32kb in a chunk */
#elif (SCRYPT_BLOCK_BYTES == 128)
#define scrypt_r_32kb 7 /* (1 << 7) = 128 * 2 blocks in a chunk * 128 bytes = Max of 32kb in a chunk */
#elif (SCRYPT_BLOCK_BYTES == 256)
#define scrypt_r_32kb 6 /* (1 << 6) = 64 * 2 blocks in a chunk * 256 bytes = Max of 32kb in a chunk */
#elif (SCRYPT_BLOCK_BYTES == 512)
#define scrypt_r_32kb 5 /* (1 << 5) = 32 * 2 blocks in a chunk * 512 bytes = Max of 32kb in a chunk */
#endif
#define scrypt_maxrfactor scrypt_r_32kb /* 32kb */
#define scrypt_maxpfactor 25 /* (1 << 25) = ~33 million */
#include <stdio.h>
//#include <malloc.h>
static void NORETURN
scrypt_fatal_error_default(const char *msg) {
fprintf(stderr, "%s\n", msg);
exit(1);
}
static scrypt_fatal_errorfn scrypt_fatal_error = scrypt_fatal_error_default;
void
scrypt_set_fatal_error(scrypt_fatal_errorfn fn) {
scrypt_fatal_error = fn;
}
static int
scrypt_power_on_self_test(void) {
const scrypt_test_setting *t;
uint8_t test_digest[64];
uint32_t i;
int res = 7, scrypt_valid;
if (!scrypt_test_mix()) {
#if !defined(SCRYPT_TEST)
scrypt_fatal_error("scrypt: mix function power-on-self-test failed");
#endif
res &= ~1;
}
if (!scrypt_test_hash()) {
#if !defined(SCRYPT_TEST)
scrypt_fatal_error("scrypt: hash function power-on-self-test failed");
#endif
res &= ~2;
}
for (i = 0, scrypt_valid = 1; post_settings[i].pw; i++) {
t = post_settings + i;
scrypt((uint8_t *)t->pw, strlen(t->pw), (uint8_t *)t->salt, strlen(t->salt), t->Nfactor, t->rfactor, t->pfactor, test_digest, sizeof(test_digest));
scrypt_valid &= scrypt_verify(post_vectors[i], test_digest, sizeof(test_digest));
}
if (!scrypt_valid) {
#if !defined(SCRYPT_TEST)
scrypt_fatal_error("scrypt: scrypt power-on-self-test failed");
#endif
res &= ~4;
}
return res;
}
#if defined(SCRYPT_TEST_SPEED)
static uint8_t *mem_base = (uint8_t *)0;
static size_t mem_bump = 0;
/* allocations are assumed to be multiples of 64 bytes and total allocations not to exceed ~1.01gb */
static scrypt_aligned_alloc
scrypt_alloc(uint64_t size) {
scrypt_aligned_alloc aa;
if (!mem_base) {
mem_base = (uint8_t *)malloc((1024 * 1024 * 1024) + (1024 * 1024) + (SCRYPT_BLOCK_BYTES - 1));
if (!mem_base)
scrypt_fatal_error("scrypt: out of memory");
mem_base = (uint8_t *)(((size_t)mem_base + (SCRYPT_BLOCK_BYTES - 1)) & ~(SCRYPT_BLOCK_BYTES - 1));
}
aa.mem = mem_base + mem_bump;
aa.ptr = aa.mem;
mem_bump += (size_t)size;
return aa;
}
static void
scrypt_free(scrypt_aligned_alloc *aa) {
mem_bump = 0;
}
#else
static scrypt_aligned_alloc
scrypt_alloc(uint64_t size) {
static const size_t max_alloc = (size_t)-1;
scrypt_aligned_alloc aa;
size += (SCRYPT_BLOCK_BYTES - 1);
if (size > max_alloc)
scrypt_fatal_error("scrypt: not enough address space on this CPU to allocate required memory");
aa.mem = (uint8_t *)malloc((size_t)size);
aa.ptr = (uint8_t *)(((size_t)aa.mem + (SCRYPT_BLOCK_BYTES - 1)) & ~(SCRYPT_BLOCK_BYTES - 1));
//fprintf(stderr, "scrypt_alloc(%zu)\n", size);
if (!aa.mem)
scrypt_fatal_error("scrypt: out of memory");
return aa;
}
static void
scrypt_free(const scrypt_aligned_alloc *aa) {
free(aa->mem);
}
#endif
void
scrypt(const uint8_t *password, size_t password_len, const uint8_t *salt, size_t salt_len, uint8_t Nfactor, uint8_t rfactor, uint8_t pfactor, uint8_t *out, size_t bytes) {
static scrypt_aligned_alloc YX, V;
uint8_t *X, *Y;
uint32_t N, r, p, chunk_bytes, i;
static int last_Nfactor = -1, last_rfactor = -1, last_pfactor = -1;
#if !defined(SCRYPT_CHOOSE_COMPILETIME)
scrypt_ROMixfn scrypt_ROMix = scrypt_getROMix();
#endif
#if defined(SCRYPT_TEST)
static int power_on_self_test = 0;
if (!power_on_self_test) {
power_on_self_test = 1;
if (!scrypt_power_on_self_test())
scrypt_fatal_error("scrypt: power on self test failed");
}
#endif
if (Nfactor > scrypt_maxNfactor)
scrypt_fatal_error("scrypt: N out of range");
if (rfactor > scrypt_maxrfactor)
scrypt_fatal_error("scrypt: r out of range");
if (pfactor > scrypt_maxpfactor)
scrypt_fatal_error("scrypt: p out of range");
N = (1 << (Nfactor + 1));
r = (1 << rfactor);
p = (1 << pfactor);
//fprintf(stderr, "scrypt(%u,%u,%u) %p %p %p %p\n", N, r, p, &V, V.mem, &YX, YX.mem);
chunk_bytes = SCRYPT_BLOCK_BYTES * r * 2;
if (Nfactor != last_Nfactor || rfactor != last_rfactor || pfactor != last_pfactor) {
//fprintf(stderr, "need to reallocate\n");
if (last_Nfactor >= 0 || last_rfactor >= 0 || last_pfactor >= 0) {
//fprintf(stderr, "freeing old V and YX\n");
scrypt_free(&V);
scrypt_free(&YX);
}
V = scrypt_alloc((uint64_t)N * chunk_bytes);
YX = scrypt_alloc((p + 1) * chunk_bytes);
last_Nfactor = Nfactor;
last_rfactor = rfactor;
last_pfactor = pfactor;
}
/* 1: X = PBKDF2(password, salt) */
Y = YX.ptr;
X = Y + chunk_bytes;
scrypt_pbkdf2(password, password_len, salt, salt_len, 1, X, chunk_bytes * p);
/* 2: X = ROMix(X) */
for (i = 0; i < p; i++)
scrypt_ROMix((scrypt_mix_word_t *)(X + (chunk_bytes * i)), (scrypt_mix_word_t *)Y, (scrypt_mix_word_t *)V.ptr, N, r);
/* 3: Out = PBKDF2(password, X) */
scrypt_pbkdf2(password, password_len, X, chunk_bytes * p, 1, out, bytes);
//scrypt_ensure_zero(YX.ptr, (p + 1) * chunk_bytes);
}
const scrypt_instance* new_instance(unsigned char Nfactor, unsigned char rfactor, unsigned char pfactor) {
if (Nfactor > scrypt_maxNfactor)
scrypt_fatal_error("scrypt: N out of range");
if (rfactor > scrypt_maxrfactor)
scrypt_fatal_error("scrypt: r out of range");
if (pfactor > scrypt_maxpfactor)
scrypt_fatal_error("scrypt: p out of range");
scrypt_instance* instance = (scrypt_instance *)malloc((size_t)sizeof(scrypt_instance));
instance->N = (1 << (Nfactor + 1));
instance->r = (1 << rfactor);
instance->p = (1 << pfactor);
uint32_t chunk_bytes = SCRYPT_BLOCK_BYTES * instance->r * 2;
instance->V = scrypt_alloc((uint64_t)instance->N * chunk_bytes);
instance->YX = scrypt_alloc((instance->p + 1) * chunk_bytes);
return instance;
}
void free_instance(const scrypt_instance* instance) {
scrypt_free(&instance->V);
scrypt_free(&instance->YX);
free((void*)instance);
}
void scrypt_preallocated(const scrypt_instance* const instance, const unsigned char *password, size_t password_len, const unsigned char *salt, size_t salt_len, unsigned char *out, size_t bytes) {
#if !defined(SCRYPT_CHOOSE_COMPILETIME)
scrypt_ROMixfn scrypt_ROMix = scrypt_getROMix();
#endif
#if defined(SCRYPT_TEST)
static int power_on_self_test = 0;
if (!power_on_self_test) {
power_on_self_test = 1;
if (!scrypt_power_on_self_test())
scrypt_fatal_error("scrypt: power on self test failed");
}
#endif
uint32_t chunk_bytes = SCRYPT_BLOCK_BYTES * instance->r * 2;
/* 1: X = PBKDF2(password, salt) */
uint8_t* Y = instance->YX.ptr;
uint8_t* X = Y + chunk_bytes;
scrypt_pbkdf2(password, password_len, salt, salt_len, 1, X, chunk_bytes * instance->p);
/* 2: X = ROMix(X) */
for (uint32_t i = 0; i < instance->p; i++) {
scrypt_ROMix((scrypt_mix_word_t *)(X + (chunk_bytes * i)), (scrypt_mix_word_t *)Y, (scrypt_mix_word_t *)instance->V.ptr, instance->N, instance->r);
}
/* 3: Out = PBKDF2(password, X) */
scrypt_pbkdf2(password, password_len, X, chunk_bytes * instance->p, 1, out, bytes);
}