-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_scorer.py
616 lines (476 loc) · 20.7 KB
/
train_scorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
import torch_geometric
import torch
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (16384, rlimit[1]))
import torch_scatter
import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from copy import deepcopy
import networkx as nx
import random
from tqdm import tqdm
import rdkit
import rdkit.Chem
import rdkit.Chem.AllChem
import rdkit.Chem.rdMolTransforms
from rdkit.Chem import rdMolTransforms
from rdkit.Geometry import Point3D
import os
import shutil
import torch.nn as nn
import torch.nn.functional as F
from utils.general_utils import *
from utils.scorer_datasets_and_loaders import *
from models.models import *
import collections
from collections.abc import Mapping, Sequence
from typing import List, Optional, Union
import torch.utils.data
from torch.utils.data.dataloader import default_collate
from torch_geometric.data import Batch, Dataset
from torch_geometric.data.data import BaseData
import gc
use_cuda = True
device = torch.device("cuda" if (torch.cuda.is_available() & use_cuda) else "cpu")
save = True
mix_node_inv_to_equi = True
mix_shape_to_nodes = True
ablate_HvarCat = False
variational = False # for Z_inv or Z_equi
variational_mode = 'inv' # both, equi, or inv
variational_GNN = False # for GNN-encoded atom embeddings
beta_schedule = np.concatenate((np.logspace(-5, -1, 100), np.ones(400)*1e-1))
beta_interval = 10000 # update beta every 10000 iterations (batches)
name = 'training_scorer'
PATH = 'results_' + name + '/'
output_file = PATH + name
# change these to load a checkpoint model
model_state = ''
learning_rate_state = None
iteration = 1
beta_iteration = 0
beta = float(beta_schedule[beta_iteration]) if ((variational == True) | (variational_GNN == True)) else None
# Data Augmentation
dihedral_var = 5.0 # 5.0
# HYPERPARAMETERS
input_nf = 45
edges_in_d = 5
n_knn = 10
conv_dims = [32, 32, 64, 128]
num_components = 64
fragment_library_dim = 64
N_fragment_layers = 3
N_members = 125 - 1
EGNN_layer_dim = 64
N_EGNN_layers = 3
output_MLP_hidden_dim = 64
append_noise = False
learned_noise = False
pooling_MLP = False
shared_encoders = False
subtract_latent_space = True
target_batch_size = 32
N_rot = 10
N_points = 5
if learning_rate_state is not None:
lr = learning_rate_state
else:
lr = 0.0005
min_lr = 0.0005 / 50.
use_scheduler = True
gamma = 0.9
num_workers = 16
N_epochs = 10 * 40
chunks = 20
seed = 0
random.seed(seed)
np.random.seed(seed = seed)
torch.manual_seed(seed)
if save:
if not os.path.exists(PATH):
os.makedirs(PATH)
os.makedirs(PATH + 'saved_models/')
shutil.copyfile('train_scorer.py', PATH + 'train_scorer.py')
def logger(text, file = output_file + '_training_log.txt'):
if save:
with open(file, 'a') as f:
f.write(text + '\n')
else:
print(text + '\n')
def val_logger(text, file = output_file + '_validation_log.txt'):
if save:
with open(file, 'a') as f:
f.write(text + '\n')
else:
print(text + '\n')
logger('reading databases')
AtomFragment_database = pd.read_pickle('data/MOSES2/MOSES2_training_val_AtomFragment_database.pkl')
AtomFragment_database = AtomFragment_database.iloc[1:].reset_index(drop = True)
filtered_database = pd.read_pickle('data/MOSES2/MOSES2_training_val_filtered_database.pkl')
# replace mols with artificial mols
MOSES2_training_val_filtered_database_artificial_mols = pd.read_pickle('data/MOSES2/MOSES2_training_val_filtered_database_artificial_mols.pkl')
filtered_database['rdkit_mol_cistrans_stereo'] = MOSES2_training_val_filtered_database_artificial_mols.artificial_mols
# I need to remove duplicates in order for the indexing to work
unmerged_future_rocs_db = pd.read_pickle('data/MOSES2/MOSES2_training_val_canonical_terminalSeeds_unmerged_future_rocs_database_all_reduced.pkl').drop_duplicates(['original_index', 'dihedral_indices', 'positions_before_sorted']).reset_index(drop = True)
unmerged_future_rocs_db['max_future_rocs_index'] = range(0, len(unmerged_future_rocs_db))
train_smiles_df = pd.read_csv('data/MOSES2/MOSES2_train_smiles_split.csv')
train_smiles = set(train_smiles_df.SMILES_nostereo)
train_db_mol = filtered_database.loc[filtered_database['SMILES_nostereo'].isin(train_smiles)].reset_index(drop = True)
train_database = train_db_mol[['original_index', 'N_atoms', 'has_conf', 'rdkit_mol_cistrans_stereo']].merge(unmerged_future_rocs_db, on='original_index')
val_smiles_df = pd.read_csv('data/MOSES2/MOSES2_val_smiles_split.csv')
val_smiles = set(val_smiles_df.SMILES_nostereo)
val_db_mol = filtered_database.loc[filtered_database['SMILES_nostereo'].isin(val_smiles)].reset_index(drop = True)
val_database = val_db_mol[['original_index', 'N_atoms', 'has_conf', 'rdkit_mol_cistrans_stereo']].merge(unmerged_future_rocs_db, on='original_index')
edge_index_array = np.load('data/MOSES2/MOSES2_training_val_edge_index_array.npy')
edge_features_array = np.load('data/MOSES2/MOSES2_training_val_edge_features_array.npy')
node_features_array = np.load('data/MOSES2/MOSES2_training_val_node_features_array.npy')
xyz_array = np.load('data/MOSES2/MOSES2_training_val_xyz_artificial_array.npy')
atom_fragment_associations_array = np.load('data/MOSES2/MOSES2_training_val_atom_fragment_associations_array.npy')
atom_fragment_associations_array = atom_fragment_associations_array - 1
atoms_pointer = np.load('data/MOSES2/MOSES2_training_val_atoms_pointer.npy')
bonds_pointer = np.load('data/MOSES2/MOSES2_training_val_bonds_pointer.npy')
max_future_rocs = np.load('data/MOSES2/max_future_rocs_data_artificial_alpha_2_0/computed_max_future_rocs.npy')
max_future_rocs_evaluated_dihedrals = np.load('data/MOSES2/max_future_rocs_data_artificial_alpha_2_0/evaluated_dihedrals.npy')
def flatten(x):
if isinstance(x, collections.abc.Iterable):
return [a for i in x for a in flatten(i)]
else:
return [x]
mols = list(train_database.rdkit_mol_cistrans_stereo)
original_index = np.array(train_database.original_index)
train_max_future_rocs_index = np.array(train_database.max_future_rocs_index)
dihedral_indices_array = np.array(flatten(train_database.dihedral_indices))
dihedral_indices_pointer = np.zeros(len(train_database) + 1, dtype = int)
s = 0
for i, p in tqdm(enumerate(train_database.dihedral_indices), total = len(train_database)):
dihedral_indices_pointer[i] = s
if p == -1:
s += 1
else:
s += len(p)
dihedral_indices_pointer[-1] = s
indices_partial_before_array = np.array(flatten(train_database.positions_before_sorted))
indices_partial_before_pointer = np.zeros(len(train_database) + 1, dtype = int)
s = 0
for i, p in tqdm(enumerate(train_database.positions_before_sorted), total = len(train_database)):
indices_partial_before_pointer[i] = s
if p == -1:
s += 1
else:
s += len(p)
indices_partial_before_pointer[-1] = s
indices_partial_after_array = np.array(flatten(train_database.positions_after_sorted))
indices_partial_after_pointer = np.zeros(len(train_database) + 1, dtype = int)
s = 0
for i, p in tqdm(enumerate(train_database.positions_after_sorted), total = len(train_database)):
indices_partial_after_pointer[i] = s
if p == -1:
s += 1
else:
s += len(p)
indices_partial_after_pointer[-1] = s
query_indices_array = np.array(flatten(train_database.query_indices))
query_indices_pointer = np.zeros(len(train_database) + 1, dtype = int)
s = 0
for i, p in tqdm(enumerate(train_database.query_indices), total = len(train_database)):
query_indices_pointer[i] = s
if p == -1:
s += 1
else:
s += len(p)
query_indices_pointer[-1] = s
val_mols = list(val_database.rdkit_mol_cistrans_stereo)
val_original_index = np.array(val_database.original_index)
val_max_future_rocs_index = np.array(val_database.max_future_rocs_index)
val_dihedral_indices_array = np.array(flatten(val_database.dihedral_indices))
val_dihedral_indices_pointer = np.zeros(len(val_database) + 1, dtype = int)
s = 0
for i, p in tqdm(enumerate(val_database.dihedral_indices), total = len(val_database)):
val_dihedral_indices_pointer[i] = s
if p == -1:
s += 1
else:
s += len(p)
val_dihedral_indices_pointer[-1] = s
val_indices_partial_before_array = np.array(flatten(val_database.positions_before_sorted))
val_indices_partial_before_pointer = np.zeros(len(val_database) + 1, dtype = int)
s = 0
for i, p in tqdm(enumerate(val_database.positions_before_sorted), total = len(val_database)):
val_indices_partial_before_pointer[i] = s
if p == -1:
s += 1
else:
s += len(p)
val_indices_partial_before_pointer[-1] = s
val_indices_partial_after_array = np.array(flatten(val_database.positions_after_sorted))
val_indices_partial_after_pointer = np.zeros(len(val_database) + 1, dtype = int)
s = 0
for i, p in tqdm(enumerate(val_database.positions_after_sorted), total = len(val_database)):
val_indices_partial_after_pointer[i] = s
if p == -1:
s += 1
else:
s += len(p)
val_indices_partial_after_pointer[-1] = s
val_query_indices_array = np.array(flatten(val_database.query_indices))
val_query_indices_pointer = np.zeros(len(val_database) + 1, dtype = int)
s = 0
for i, p in tqdm(enumerate(val_database.query_indices), total = len(val_database)):
val_query_indices_pointer[i] = s
if p == -1:
s += 1
else:
s += len(p)
val_query_indices_pointer[-1] = s
logger('initializing model')
model = ROCS_Model_Point_Cloud(
input_nf = input_nf,
edges_in_d = edges_in_d,
n_knn = n_knn,
conv_dims = conv_dims,
num_components = num_components,
fragment_library_dim = fragment_library_dim,
N_fragment_layers = N_fragment_layers,
append_noise = append_noise,
N_members = N_members,
EGNN_layer_dim = EGNN_layer_dim,
N_EGNN_layers = N_EGNN_layers,
output_MLP_hidden_dim = output_MLP_hidden_dim,
pooling_MLP = pooling_MLP,
shared_encoders = shared_encoders,
subtract_latent_space = subtract_latent_space,
variational = variational,
variational_mode = variational_mode,
variational_GNN = variational_GNN,
mix_node_inv_to_equi = mix_node_inv_to_equi,
mix_shape_to_nodes = mix_shape_to_nodes,
ablate_HvarCat = ablate_HvarCat,
old_EGNN = False,
).float()
if (model.append_noise == True) and (learned_noise == False):
for p in model.Encoder.fragment_encoder.noise_embedding.parameters():
p.requires_grad = False
if model_state != '':
logger(f'loading model parameters from {model_state}')
model.load_state_dict(torch.load(model_state, map_location=next(model.parameters()).device), strict=True)
model.to(device)
logger(f'model has {sum([np.prod(p.size()) for p in filter(lambda p: p.requires_grad, model.parameters())])} parameters')
logger('creating dataloaders')
library_dataset = AtomFragmentLibrary(AtomFragment_database)
library_loader = torch_geometric.data.DataLoader(
library_dataset,
shuffle = False,
batch_size = len(library_dataset),
num_workers = 0,
)
fragment_batch = next(iter(library_loader))
fragment_batch = fragment_batch.to(device)
train_sampler = VNNBatchSampler(train_database, target_batch_size, chunks = chunks)
train_dataset = ROCSDataset_point_cloud(
mols = mols,
max_future_rocs = max_future_rocs,
max_future_rocs_evaluated_dihedrals = max_future_rocs_evaluated_dihedrals,
max_future_rocs_index = train_max_future_rocs_index,
original_index = original_index,
edge_index_array = edge_index_array,
edge_features_array = edge_features_array,
node_features_array = node_features_array,
xyz_array = xyz_array,
atom_fragment_associations_array = atom_fragment_associations_array,
atoms_pointer = atoms_pointer,
bonds_pointer = bonds_pointer,
dihedral_indices_array = dihedral_indices_array,
dihedral_indices_pointer = dihedral_indices_pointer,
indices_partial_before_array = indices_partial_before_array,
indices_partial_before_pointer = indices_partial_before_pointer,
indices_partial_after_array = indices_partial_after_array,
indices_partial_after_pointer = indices_partial_after_pointer,
query_indices_array = query_indices_array,
query_indices_pointer = query_indices_pointer,
N_points = N_points,
N_rot = N_rot,
dihedral_var = dihedral_var,
)
train_loader = torch_geometric.data.DataLoader(
train_dataset,
batch_sampler = train_sampler,
num_workers = num_workers,
follow_batch = ['x', 'x_subgraph'])
val_sampler = VNNBatchSampler(val_database, target_batch_size, chunks = 25)
val_dataset = ROCSDataset_point_cloud(
mols = val_mols,
max_future_rocs = max_future_rocs,
max_future_rocs_evaluated_dihedrals = max_future_rocs_evaluated_dihedrals,
max_future_rocs_index = val_max_future_rocs_index,
original_index = val_original_index,
edge_index_array = edge_index_array,
edge_features_array = edge_features_array,
node_features_array = node_features_array,
xyz_array = xyz_array,
atom_fragment_associations_array = atom_fragment_associations_array,
atoms_pointer = atoms_pointer,
bonds_pointer = bonds_pointer,
dihedral_indices_array = val_dihedral_indices_array,
dihedral_indices_pointer = val_dihedral_indices_pointer,
indices_partial_before_array = val_indices_partial_before_array,
indices_partial_before_pointer = val_indices_partial_before_pointer,
indices_partial_after_array = val_indices_partial_after_array,
indices_partial_after_pointer = val_indices_partial_after_pointer,
query_indices_array = val_query_indices_array,
query_indices_pointer = val_query_indices_pointer,
N_points = N_points,
N_rot = N_rot,
dihedral_var = dihedral_var,
)
val_loader = torch_geometric.data.DataLoader(
val_dataset,
batch_sampler = val_sampler,
num_workers = num_workers,
follow_batch = ['x', 'x_subgraph'])
def loop(model, optimizer, batch, training = True, device = torch.device('cpu'), N_rot = 10, variational_GNN = False, beta = 0.0):
data, rocs = batch
batch_size = data.subgraph_size.shape[0]
if training:
optimizer.zero_grad()
rocs = rocs.reshape(-1)
query_indices_rel_to_partial = data.query_index_subgraph
query_indices_batch = data.new_batch_subgraph[query_indices_rel_to_partial]
data = data.to(device)
rocs = rocs.float().to(device)
args = (
batch_size,
data.x.float(),
data.edge_index,
data.edge_attr.float(),
data.pos.float(),
data.cloud.float(),
data.cloud_indices,
data.atom_fragment_associations,
data.x_subgraph.float(),
data.edge_index_subgraph,
data.edge_attr_subgraph.float(),
data.pos_subgraph.float(),
data.cloud_subgraph.float(),
data.cloud_indices_subgraph,
data.atom_fragment_associations_subgraph,
query_indices_rel_to_partial.to(device),
query_indices_batch.to(device),
fragment_batch,
)
if not training:
with torch.no_grad():
out_ = model(*args, device = device)
else:
out_ = model(*args, device = device)
out = out_[0] # predicted scores
out = torch.sigmoid(out)
MSE_loss = torch.mean(torch.square(out.squeeze() - rocs.squeeze()))
backprop_loss = MSE_loss
if variational_GNN: # since batches contain molecules with same # of atoms, we don't need to do any additional averaging
h_mean, h_std = out_[5], out_[6]
KL_unreduced = 0.5 * (torch.sum(h_mean**2.0, dim = 1) + torch.sum(h_std**2.0, dim = 1) - torch.sum(torch.log(h_std**2.0) + 1.0, dim = 1))
KL_loss = torch.mean(KL_unreduced)
backprop_loss = backprop_loss + beta * KL_loss
else: # no variational components in encoder
KL_loss = torch.tensor(float('NaN')) # Nan
mae = torch.mean(torch.abs(out.squeeze() - rocs.squeeze()))
acc = torch.mean((torch.argmax(out.squeeze().reshape(-1, N_rot), dim = 1) == torch.argmax(rocs.squeeze().reshape(-1, N_rot), dim = 1)).type(torch.float))
if training:
backprop_loss.backward()
optimizer.step()
return batch_size, MSE_loss.item(), mae.item(), acc.item(), KL_loss.item()
logger('starting to train')
len_train_loader = len(train_loader)
len_val_loader = len(val_loader)
logger(f'train loader has approx. {len_train_loader} batches')
val_logger(f'val loader has approx. {len_val_loader} batches')
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr = lr)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma) if use_scheduler else None
train_loss = []
train_KL_loss = []
train_mae = []
train_acc = []
train_epoch_number = []
val_loss = []
val_KL_loss = []
val_mae = []
val_acc = []
val_epoch_number = []
interval = 5000
save_interval = 30000
scheduler_interval = 50000
validation_interval = 25000
losses = []
KL_losses = []
MAEs = []
accs = []
batch_sizes = []
logger(f"starting training with learning rate: {optimizer.param_groups[0]['lr']}")
for epoch in range(1, 1 + N_epochs):
validate = False
training = True
model.train()
for b, batch in enumerate(train_loader):
batch_size, loss, mae, acc, KL_loss = loop(model, optimizer, batch, training = training, device = device, N_rot = N_rot, variational_GNN = variational_GNN, beta = beta)
if (iteration % 1000) == 0:
gc.collect()
batch_sizes.append(batch_size)
MAEs.append(mae)
accs.append(acc)
losses.append(loss)
KL_losses.append(KL_loss)
if iteration % interval == 0:
train_loss.append(float(np.nansum(np.array(losses) * np.array(batch_sizes))) / sum(np.array(batch_sizes)))
train_KL_loss.append(float(np.nansum(np.array(KL_losses) * np.array(batch_sizes))) / sum(np.array(batch_sizes)))
train_mae.append(float(np.nansum(np.array(MAEs) * np.array(batch_sizes))) / sum(np.array(batch_sizes)))
train_acc.append(float(np.nansum(np.array(accs) * np.array(batch_sizes))) / sum(np.array(batch_sizes)))
train_epoch_number.append(epoch)
logger(f'iteration: {iteration}, epoch: {epoch}, batch: {b}, loss: {train_loss[-1]}, MAE: {train_mae[-1]}, acc: {train_acc[-1]}, KL_loss: {train_KL_loss[-1]}' )
losses = []
KL_losses = []
MAEs = []
accs = []
batch_sizes = []
if (save) & ((iteration % save_interval) == 0):
logger(f'saving model {int(iteration / save_interval)}...')
torch.save(model.state_dict(), PATH + f'saved_models/rocs_model_{int(iteration / save_interval)}.pt')
if (use_scheduler == True) & (iteration % scheduler_interval == 0):
scheduler.step()
logger(f"learning rate reduced to: {optimizer.param_groups[0]['lr']}")
if optimizer.param_groups[0]['lr'] <= min_lr:
use_scheduler = False
if ((variational == True) | (variational_GNN == True)) & (iteration % beta_interval == 0):
beta_iteration += 1
beta = float(beta_schedule[beta_iteration])
logger(f"beta increased to: {beta}")
iteration += 1
if (iteration - 1) % validation_interval == 0:
validate = True # validate model after epoch chunk finishes
if validate == False:
continue
logger(f'validating model at iteration: {iteration - 1}')
training = False
val_losses = []
val_KL_losses = []
val_MAEs = []
val_accs = []
val_batch_sizes = []
model.eval()
for b, batch in enumerate(val_loader): # with chunks = 25, we only evaluate on a random 4% of the entire validation set
batch_size, loss, mae, acc, KL_loss = loop(model, None, batch, training = training, device = device, N_rot = N_rot, variational_GNN = variational_GNN, beta = beta)
if (b % 1000) == 0:
gc.collect()
val_batch_sizes.append(batch_size)
val_MAEs.append(mae)
val_accs.append(acc)
val_losses.append(loss)
val_KL_losses.append(KL_loss)
val_loss.append(float(np.nansum(np.array(val_losses) * np.array(val_batch_sizes))) / sum(np.array(val_batch_sizes)))
val_KL_loss.append(float(np.nansum(np.array(val_KL_losses) * np.array(val_batch_sizes))) / sum(np.array(val_batch_sizes)))
val_mae.append(float(np.nansum(np.array(val_MAEs) * np.array(val_batch_sizes))) / sum(np.array(val_batch_sizes)))
val_acc.append(float(np.nansum(np.array(val_accs) * np.array(val_batch_sizes))) / sum(np.array(val_batch_sizes)))
val_epoch_number.append(epoch)
val_logger(f'iteration: {iteration - 1}, loss: {val_loss[-1]}, MAE: {val_mae[-1]}, acc: {val_acc[-1]}, KL_loss: {val_KL_loss[-1]}')