-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
241 lines (209 loc) · 8.01 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import tensorflow as tf
import tensorflow.contrib.slim as slim
import scipy.misc
import numpy as np
class Model:
#build icnet model class
def resize_nn(self, x, ratio):
"""
Resizing image mianly for upsample
:param x: Input TF Tensor
:param ratio: Ratio for resizing, must be int
:return: Output for resized image(layer)
"""
s = tf.shape(x)
h = s[1]
w = s[2]
return tf.image.resize_nearest_neighbor(x, [h * ratio, w * ratio])
def conv(self, x, num_out_layers, kernel_size = 3, stride = 1, activation_fn=tf.nn.elu,
normalizer_fn=None):
"""
Convolution layer
:param x: Input TF Tensor
:param num_out_layers: Number of output filters
:param kernel_size: Convolution kernel size
:param stride: Stride for convolution
:return: Convolution layer
"""
return slim.conv2d(x, num_out_layers, kernel_size, stride, 'SAME',
activation_fn=activation_fn, normalizer_fn=normalizer_fn)
def max_pool(self, x):
"""
Max Pooling layer
:param x: Input TF Tensor
:return: Pooling layer
"""
return slim.max_pool2d(x, [2, 2])
def conv_block(self, x, num_out):
"""
Convolution block
:param x: Input TF Tensor
:param num_out_layers: Number of output filters
:return: Output of TF Tensor
"""
with tf.variable_scope("block1"):
conv1 = self.conv(x, num_out)
pool1 = self.max_pool(conv1)
with tf.variable_scope("block2"):
conv2 = self.conv(pool1, num_out*2)
pool2 = self.max_pool(conv2)
with tf.variable_scope("block3"):
conv3 = self.conv(pool2, num_out*4)
pool3 = self.max_pool(conv3)
return pool3
def dilate_conv (self, x, ratio, num_in, num_out ):
"""
Dilate Convolution
:param x: Input TF Tensor
:param ratio: Number of dilation
:param num_in_layers: Number of input filters
:param num_out_layers: Number of output filters
:return: Dilated layer
"""
dilate_filter = tf.Variable(tf.truncated_normal([3, 3, num_in, num_out], stddev=0.01))
conv1 = tf.nn.atrous_conv2d(x, filters = dilate_filter, rate=ratio, padding = 'SAME')
return conv1
def cff_block(self, small, big, num_in_layers):
"""
Cascade Feature Fusion Block
:param small: Input Smaller TF Tensor
:param big: Input Bigger TF Tensor
:param num_in_layers: Number of input filters
:return: Fused Layer and Classfier Layer
"""
#both small and big has to have same depth layers
upsample1 = self.resize_nn(small, 2)
upsample2 = self.conv(upsample1, num_in_layers*2, normalizer_fn = slim.batch_norm)
#projection conv 1x1
projec = self.conv(big, num_in_layers*2, kernel_size = 1, normalizer_fn = slim.batch_norm)
elementwise_sum1 = tf.add(upsample2, projec)
elementwise_sum2 = tf.nn.relu(elementwise_sum1)
classifier = self.conv(upsample1, 2, kernel_size = 1)
softmax = tf.nn.softmax(classifier)
return elementwise_sum2, classifier
def build_model(self, low, middle, high):
"""
Build ICNet
:param low: Low Resolution Input TF Tensor
:param middle: Middle Resolution Input TF Tensor
:param high: High Resolution Input TF Tensor
:return: classifier Layer * 4
"""
with tf.variable_scope("shared") as scope:
low = self.conv_block(low, 32)
scope.reuse_variables()
middle = self.conv_block(middle, 32)
with tf.variable_scope("dilated"):
low = self.dilate_conv(low, 3, 32*4, 32*4*2)
#reduce conv
low = self.conv(low, 32*4)
with tf.variable_scope("cff1"):
integrate1, classifier1 = self.cff_block(low, middle, 32*4)
with tf.variable_scope("high_res"):
high = self.conv_block(high, 32*2)
with tf.variable_scope("cff2"):
integrate2, classifier2 = self.cff_block(integrate1, high, 32*4*2)
with tf.variable_scope("decode"):
upsample1 = self.resize_nn(integrate2,2)
upsample2 = self.resize_nn(upsample1,2)
pre_cls3 = self.conv(upsample2, 2, kernel_size = 1)
classifier3 = tf.nn.softmax(pre_cls3)
projec = self.conv(upsample2, 32*4*2, kernel_size = 1)
upsample3 = self.resize_nn(upsample2,2)
pre_cls4 = self.conv(upsample3, 2, kernel_size = 1)
classifier4 = tf.nn.softmax(pre_cls4)
return classifier1, classifier2, classifier3, classifier4
if __name__ == '__main__':
#overfitting one image
#loading image
image_path = "./ex_data/um_000000.png"
gt_image_file = "./ex_data/um_lane_000000.png"
image = scipy.misc.imread(image_path)
gt = scipy.misc.imread(gt_image_file)
#input shape
image_shape = (320, 1152)
middle_shape = (int(image_shape[0]/2), int(image_shape[1]/2))
low_shape = (int(image_shape[0]/4), int(image_shape[1]/4))
gt2_shape = (int(image_shape[0]/8), int(image_shape[1]/8))
gt1_shape = (int(image_shape[0]/16), int(image_shape[1]/16))
#resize images
image = scipy.misc.imresize(image, image_shape)
middle_img = scipy.misc.imresize(image, middle_shape)
low_img = scipy.misc.imresize(image, low_shape)
gt4 = scipy.misc.imresize(gt, image_shape)
gt3 = scipy.misc.imresize(gt, middle_shape)
gt2 = scipy.misc.imresize(gt, gt2_shape)
gt1 = scipy.misc.imresize(gt, gt1_shape)
#gt processing
def gt_process(gt_image):
foreground_color = np.array([255, 0, 255])
gt_fg = np.all(gt_image == foreground_color, axis=2)
gt_fg = gt_fg.reshape(*gt_fg.shape, 1)
gt_image = np.concatenate((np.invert(gt_fg), gt_fg), axis=2)
return gt_image
# Making 1 batch
image = [image]
middle_img = [middle_img]
low_img = [low_img]
gt4 = [gt_process(gt4)]
gt3 = [gt_process(gt3)]
gt2 = [gt_process(gt2)]
gt1 = [gt_process(gt1)]
# place holder
num_classes = 2
image_input = tf.placeholder(tf.float32, shape=( None, None, None, 3), name="img")
middle_input = tf.placeholder(tf.float32, shape=( None, None, None, 3), name="middle_img")
low_input = tf.placeholder(tf.float32, shape=( None, None, None, 3), name="low_img")
correct_label1 = tf.placeholder(tf.float32, shape=( None, None, None, num_classes), name="label1")
correct_label2 = tf.placeholder(tf.float32, shape=( None, None, None, num_classes), name="label2")
correct_label3 = tf.placeholder(tf.float32, shape=( None, None, None, num_classes), name="label3")
correct_label4 = tf.placeholder(tf.float32, shape=( None, None, None, num_classes), name="label4")
#model
model = Model()
cls1, cls2, cls3, cls4 = model.build_model(low_input, middle_input, image_input)
#loss
learning_rate = 0.001
loss1 = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits = cls1, labels = correct_label1))
loss2 = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits = cls2, labels = correct_label2))
loss3 = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits = cls3, labels = correct_label3))
loss4 = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits = cls4, labels = correct_label4))
cross_entropy_loss = loss1+loss2+loss3+loss4
train_op = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cross_entropy_loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
#training one image
for i in range(200):
# print(i)
train_loss , _ = sess.run([cross_entropy_loss, train_op],feed_dict={low_input: low_img,
middle_input: middle_img,
image_input: image,
correct_label1: gt1,
correct_label2: gt2,
correct_label3: gt3,
correct_label4: gt4})
if(i % 20 == 0):
print("epoch: %d, loss: %e" %(i, train_loss))
#testing one image
im_softmax = sess.run(
[cls4],
{low_input: low_img,
middle_input: middle_img,
image_input: image})
#process output
im_softmax = im_softmax[0][0][:, :,1].reshape(image_shape[0], image_shape[1])
segmentation = (im_softmax > 0.5).reshape(image_shape[0], image_shape[1], 1)
mask = np.dot(segmentation, np.array([[0, 255, 0, 127]]))
mask = scipy.misc.toimage(mask, mode="RGBA")
#load(reload) test image
image_path = "./ex_data/um_000000.png"
image = scipy.misc.imread(image_path)
image_shape = (320, 1152)
image = scipy.misc.imresize(image, image_shape)
#paste mask
street_im = scipy.misc.toimage(image)
street_im.paste(mask, box=None, mask=mask)
scipy.misc.imsave('./output/output.png', street_im)