-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmatrix.c
executable file
·639 lines (573 loc) · 21.1 KB
/
matrix.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
// Copyright (c) 2014, 2015, Freescale Semiconductor, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Freescale Semiconductor, Inc. nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL FREESCALE SEMICONDUCTOR, INC. BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// This file contains matrix manipulation functions.
//
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include "config.h"
#include "types.h"
#include "matrix.h"
// compile time constants that are private to this file
#define CORRUPTMATRIX 0.001F // column vector modulus limit for rotation matrix
// function sets the 3x3 matrix A to the identity matrix
void f3x3matrixAeqI(float A[][3])
{
float *pAij; // pointer to A[i][j]
int8 i, j; // loop counters
for (i = 0; i < 3; i++)
{
// set pAij to &A[i][j=0]
pAij = A[i];
for (j = 0; j < 3; j++)
{
*(pAij++) = 0.0F;
}
A[i][i] = 1.0F;
}
return;
}
// function sets 3x3 matrix A to 3x3 matrix B
void f3x3matrixAeqB(float A[][3], float B[][3])
{
float *pAij; // pointer to A[i][j]
float *pBij; // pointer to B[i][j]
int8 i, j; // loop counters
for (i = 0; i < 3; i++)
{
// set pAij to &A[i][j=0] and pBij to &B[i][j=0]
pAij = A[i];
pBij = B[i];
for (j = 0; j < 3; j++)
{
*(pAij++) = *(pBij++);
}
}
return;
}
// function sets the matrix A to the identity matrix
void fmatrixAeqI(float *A[], int16 rc)
{
// rc = rows and columns in A
float *pAij; // pointer to A[i][j]
int8 i, j; // loop counters
for (i = 0; i < rc; i++)
{
// set pAij to &A[i][j=0]
pAij = A[i];
for (j = 0; j < rc; j++)
{
*(pAij++) = 0.0F;
}
A[i][i] = 1.0F;
}
return;
}
// function sets every entry in the 3x3 matrix A to a constant scalar
void f3x3matrixAeqScalar(float A[][3], float Scalar)
{
float *pAij; // pointer to A[i][j]
int8 i, j; // counters
for (i = 0; i < 3; i++)
{
// set pAij to &A[i][j=0]
pAij = A[i];
for (j = 0; j < 3; j++)
{
*(pAij++) = Scalar;
}
}
return;
}
// function multiplies all elements of 3x3 matrix A by the specified scalar
void f3x3matrixAeqAxScalar(float A[][3], float Scalar)
{
float *pAij; // pointer to A[i][j]
int8 i, j; // loop counters
for (i = 0; i < 3; i++)
{
// set pAij to &A[i][j=0]
pAij = A[i];
for (j = 0; j < 3; j++)
{
*(pAij++) *= Scalar;
}
}
return;
}
// function negates all elements of 3x3 matrix A
void f3x3matrixAeqMinusA(float A[][3])
{
float *pAij; // pointer to A[i][j]
int8 i, j; // loop counters
for (i = 0; i < 3; i++)
{
// set pAij to &A[i][j=0]
pAij = A[i];
for (j = 0; j < 3; j++)
{
*pAij = -*pAij;
pAij++;
}
}
return;
}
// function directly calculates the symmetric inverse of a symmetric 3x3 matrix
// only the on and above diagonal terms in B are used and need to be specified
void f3x3matrixAeqInvSymB(float A[][3], float B[][3])
{
float fB11B22mB12B12; // B[1][1] * B[2][2] - B[1][2] * B[1][2]
float fB12B02mB01B22; // B[1][2] * B[0][2] - B[0][1] * B[2][2]
float fB01B12mB11B02; // B[0][1] * B[1][2] - B[1][1] * B[0][2]
float ftmp; // determinant and then reciprocal
// calculate useful products
fB11B22mB12B12 = B[1][1] * B[2][2] - B[1][2] * B[1][2];
fB12B02mB01B22 = B[1][2] * B[0][2] - B[0][1] * B[2][2];
fB01B12mB11B02 = B[0][1] * B[1][2] - B[1][1] * B[0][2];
// set ftmp to the determinant of the input matrix B
ftmp = B[0][0] * fB11B22mB12B12 + B[0][1] * fB12B02mB01B22 + B[0][2] * fB01B12mB11B02;
// set A to the inverse of B for any determinant except zero
if (ftmp != 0.0F)
{
ftmp = 1.0F / ftmp;
A[0][0] = fB11B22mB12B12 * ftmp;
A[1][0] = A[0][1] = fB12B02mB01B22 * ftmp;
A[2][0] = A[0][2] = fB01B12mB11B02 * ftmp;
A[1][1] = (B[0][0] * B[2][2] - B[0][2] * B[0][2]) * ftmp;
A[2][1] = A[1][2] = (B[0][2] * B[0][1] - B[0][0] * B[1][2]) * ftmp;
A[2][2] = (B[0][0] * B[1][1] - B[0][1] * B[0][1]) * ftmp;
}
else
{
// provide the identity matrix if the determinant is zero
f3x3matrixAeqI(A);
}
return;
}
// function calculates the determinant of a 3x3 matrix
float f3x3matrixDetA(float A[][3])
{
return (A[CHX][CHX] * (A[CHY][CHY] * A[CHZ][CHZ] - A[CHY][CHZ] * A[CHZ][CHY]) +
A[CHX][CHY] * (A[CHY][CHZ] * A[CHZ][CHX] - A[CHY][CHX] * A[CHZ][CHZ]) +
A[CHX][CHZ] * (A[CHY][CHX] * A[CHZ][CHY] - A[CHY][CHY] * A[CHZ][CHX]));
}
// function computes all eigenvalues and eigenvectors of a real symmetric matrix A[0..n-1][0..n-1]
// stored in the top left of a 10x10 array A[10][10]
// A[][] is changed on output.
// eigval[0..n-1] returns the eigenvalues of A[][].
// eigvec[0..n-1][0..n-1] returns the normalized eigenvectors of A[][]
// the eigenvectors are not sorted by value
// n can vary up to and including 10 but the matrices A and eigvec must have 10 columns.
void eigencompute10(float A[][10], float eigval[], float eigvec[][10], int8 n)
{
// maximum number of iterations to achieve convergence: in practice 6 is typical
#define NITERATIONS 15
// various trig functions of the jacobi rotation angle phi
float cot2phi, tanhalfphi, tanphi, sinphi, cosphi;
// scratch variable to prevent over-writing during rotations
float ftmp;
// residue from remaining non-zero above diagonal terms
float residue;
// matrix row and column indices
int8 ir, ic;
// general loop counter
int8 j;
// timeout ctr for number of passes of the algorithm
int8 ctr;
// initialize eigenvectors matrix and eigenvalues array
for (ir = 0; ir < n; ir++)
{
// loop over all columns
for (ic = 0; ic < n; ic++)
{
// set on diagonal and off-diagonal elements to zero
eigvec[ir][ic] = 0.0F;
}
// correct the diagonal elements to 1.0
eigvec[ir][ir] = 1.0F;
// initialize the array of eigenvalues to the diagonal elements of m
eigval[ir] = A[ir][ir];
}
// initialize the counter and loop until converged or NITERATIONS reached
ctr = 0;
do
{
// compute the absolute value of the above diagonal elements as exit criterion
residue = 0.0F;
// loop over rows excluding last row
for (ir = 0; ir < n - 1; ir++)
{
// loop over above diagonal columns
for (ic = ir + 1; ic < n; ic++)
{
// accumulate the residual off diagonal terms which are being driven to zero
residue += fabsf(A[ir][ic]);
}
}
// check if we still have work to do
if (residue > 0.0F)
{
// loop over all rows with the exception of the last row (since only rotating above diagonal elements)
for (ir = 0; ir < n - 1; ir++)
{
// loop over columns ic (where ic is always greater than ir since above diagonal)
for (ic = ir + 1; ic < n; ic++)
{
// only continue with this element if the element is non-zero
if (fabsf(A[ir][ic]) > 0.0F)
{
// calculate cot(2*phi) where phi is the Jacobi rotation angle
cot2phi = 0.5F * (eigval[ic] - eigval[ir]) / (A[ir][ic]);
// calculate tan(phi) correcting sign to ensure the smaller solution is used
tanphi = 1.0F / (fabsf(cot2phi) + sqrtf(1.0F + cot2phi * cot2phi));
if (cot2phi < 0.0F)
{
tanphi = -tanphi;
}
// calculate the sine and cosine of the Jacobi rotation angle phi
cosphi = 1.0F / sqrtf(1.0F + tanphi * tanphi);
sinphi = tanphi * cosphi;
// calculate tan(phi/2)
tanhalfphi = sinphi / (1.0F + cosphi);
// set tmp = tan(phi) times current matrix element used in update of leading diagonal elements
ftmp = tanphi * A[ir][ic];
// apply the jacobi rotation to diagonal elements [ir][ir] and [ic][ic] stored in the eigenvalue array
// eigval[ir] = eigval[ir] - tan(phi) * A[ir][ic]
eigval[ir] -= ftmp;
// eigval[ic] = eigval[ic] + tan(phi) * A[ir][ic]
eigval[ic] += ftmp;
// by definition, applying the jacobi rotation on element ir, ic results in 0.0
A[ir][ic] = 0.0F;
// apply the jacobi rotation to all elements of the eigenvector matrix
for (j = 0; j < n; j++)
{
// store eigvec[j][ir]
ftmp = eigvec[j][ir];
// eigvec[j][ir] = eigvec[j][ir] - sin(phi) * (eigvec[j][ic] + tan(phi/2) * eigvec[j][ir])
eigvec[j][ir] = ftmp - sinphi * (eigvec[j][ic] + tanhalfphi * ftmp);
// eigvec[j][ic] = eigvec[j][ic] + sin(phi) * (eigvec[j][ir] - tan(phi/2) * eigvec[j][ic])
eigvec[j][ic] = eigvec[j][ic] + sinphi * (ftmp - tanhalfphi * eigvec[j][ic]);
}
// apply the jacobi rotation only to those elements of matrix m that can change
for (j = 0; j <= ir - 1; j++)
{
// store A[j][ir]
ftmp = A[j][ir];
// A[j][ir] = A[j][ir] - sin(phi) * (A[j][ic] + tan(phi/2) * A[j][ir])
A[j][ir] = ftmp - sinphi * (A[j][ic] + tanhalfphi * ftmp);
// A[j][ic] = A[j][ic] + sin(phi) * (A[j][ir] - tan(phi/2) * A[j][ic])
A[j][ic] = A[j][ic] + sinphi * (ftmp - tanhalfphi * A[j][ic]);
}
for (j = ir + 1; j <= ic - 1; j++)
{
// store A[ir][j]
ftmp = A[ir][j];
// A[ir][j] = A[ir][j] - sin(phi) * (A[j][ic] + tan(phi/2) * A[ir][j])
A[ir][j] = ftmp - sinphi * (A[j][ic] + tanhalfphi * ftmp);
// A[j][ic] = A[j][ic] + sin(phi) * (A[ir][j] - tan(phi/2) * A[j][ic])
A[j][ic] = A[j][ic] + sinphi * (ftmp - tanhalfphi * A[j][ic]);
}
for (j = ic + 1; j < n; j++)
{
// store A[ir][j]
ftmp = A[ir][j];
// A[ir][j] = A[ir][j] - sin(phi) * (A[ic][j] + tan(phi/2) * A[ir][j])
A[ir][j] = ftmp - sinphi * (A[ic][j] + tanhalfphi * ftmp);
// A[ic][j] = A[ic][j] + sin(phi) * (A[ir][j] - tan(phi/2) * A[ic][j])
A[ic][j] = A[ic][j] + sinphi * (ftmp - tanhalfphi * A[ic][j]);
}
} // end of test for matrix element already zero
} // end of loop over columns
} // end of loop over rows
} // end of test for non-zero residue
} while ((residue > 0.0F) && (ctr++ < NITERATIONS)); // end of main loop
return;
}
// function computes all eigenvalues and eigenvectors of a real symmetric matrix A[0..n-1][0..n-1]
// stored in the top left of a 4x4 array A[4][4]
// A[][] is changed on output.
// eigval[0..n-1] returns the eigenvalues of A[][].
// eigvec[0..n-1][0..n-1] returns the normalized eigenvectors of A[][]
// the eigenvectors are not sorted by value
// n can vary up to and including 4 but the matrices A and eigvec must have 4 columns.
// this function is identical to eigencompute10 except for the workaround for 4x4 matrices since C cannot
// handle functions accepting matrices with variable numbers of columns.
void eigencompute4(float A[][4], float eigval[], float eigvec[][4], int8 n)
{
// maximum number of iterations to achieve convergence: in practice 6 is typical
#define NITERATIONS 15
// various trig functions of the jacobi rotation angle phi
float cot2phi, tanhalfphi, tanphi, sinphi, cosphi;
// scratch variable to prevent over-writing during rotations
float ftmp;
// residue from remaining non-zero above diagonal terms
float residue;
// matrix row and column indices
int8 ir, ic;
// general loop counter
int8 j;
// timeout ctr for number of passes of the algorithm
int8 ctr;
// initialize eigenvectors matrix and eigenvalues array
for (ir = 0; ir < n; ir++)
{
// loop over all columns
for (ic = 0; ic < n; ic++)
{
// set on diagonal and off-diagonal elements to zero
eigvec[ir][ic] = 0.0F;
}
// correct the diagonal elements to 1.0
eigvec[ir][ir] = 1.0F;
// initialize the array of eigenvalues to the diagonal elements of m
eigval[ir] = A[ir][ir];
}
// initialize the counter and loop until converged or NITERATIONS reached
ctr = 0;
do
{
// compute the absolute value of the above diagonal elements as exit criterion
residue = 0.0F;
// loop over rows excluding last row
for (ir = 0; ir < n - 1; ir++)
{
// loop over above diagonal columns
for (ic = ir + 1; ic < n; ic++)
{
// accumulate the residual off diagonal terms which are being driven to zero
residue += fabsf(A[ir][ic]);
}
}
// check if we still have work to do
if (residue > 0.0F)
{
// loop over all rows with the exception of the last row (since only rotating above diagonal elements)
for (ir = 0; ir < n - 1; ir++)
{
// loop over columns ic (where ic is always greater than ir since above diagonal)
for (ic = ir + 1; ic < n; ic++)
{
// only continue with this element if the element is non-zero
if (fabsf(A[ir][ic]) > 0.0F)
{
// calculate cot(2*phi) where phi is the Jacobi rotation angle
cot2phi = 0.5F * (eigval[ic] - eigval[ir]) / (A[ir][ic]);
// calculate tan(phi) correcting sign to ensure the smaller solution is used
tanphi = 1.0F / (fabsf(cot2phi) + sqrtf(1.0F + cot2phi * cot2phi));
if (cot2phi < 0.0F)
{
tanphi = -tanphi;
}
// calculate the sine and cosine of the Jacobi rotation angle phi
cosphi = 1.0F / sqrtf(1.0F + tanphi * tanphi);
sinphi = tanphi * cosphi;
// calculate tan(phi/2)
tanhalfphi = sinphi / (1.0F + cosphi);
// set tmp = tan(phi) times current matrix element used in update of leading diagonal elements
ftmp = tanphi * A[ir][ic];
// apply the jacobi rotation to diagonal elements [ir][ir] and [ic][ic] stored in the eigenvalue array
// eigval[ir] = eigval[ir] - tan(phi) * A[ir][ic]
eigval[ir] -= ftmp;
// eigval[ic] = eigval[ic] + tan(phi) * A[ir][ic]
eigval[ic] += ftmp;
// by definition, applying the jacobi rotation on element ir, ic results in 0.0
A[ir][ic] = 0.0F;
// apply the jacobi rotation to all elements of the eigenvector matrix
for (j = 0; j < n; j++)
{
// store eigvec[j][ir]
ftmp = eigvec[j][ir];
// eigvec[j][ir] = eigvec[j][ir] - sin(phi) * (eigvec[j][ic] + tan(phi/2) * eigvec[j][ir])
eigvec[j][ir] = ftmp - sinphi * (eigvec[j][ic] + tanhalfphi * ftmp);
// eigvec[j][ic] = eigvec[j][ic] + sin(phi) * (eigvec[j][ir] - tan(phi/2) * eigvec[j][ic])
eigvec[j][ic] = eigvec[j][ic] + sinphi * (ftmp - tanhalfphi * eigvec[j][ic]);
}
// apply the jacobi rotation only to those elements of matrix m that can change
for (j = 0; j <= ir - 1; j++)
{
// store A[j][ir]
ftmp = A[j][ir];
// A[j][ir] = A[j][ir] - sin(phi) * (A[j][ic] + tan(phi/2) * A[j][ir])
A[j][ir] = ftmp - sinphi * (A[j][ic] + tanhalfphi * ftmp);
// A[j][ic] = A[j][ic] + sin(phi) * (A[j][ir] - tan(phi/2) * A[j][ic])
A[j][ic] = A[j][ic] + sinphi * (ftmp - tanhalfphi * A[j][ic]);
}
for (j = ir + 1; j <= ic - 1; j++)
{
// store A[ir][j]
ftmp = A[ir][j];
// A[ir][j] = A[ir][j] - sin(phi) * (A[j][ic] + tan(phi/2) * A[ir][j])
A[ir][j] = ftmp - sinphi * (A[j][ic] + tanhalfphi * ftmp);
// A[j][ic] = A[j][ic] + sin(phi) * (A[ir][j] - tan(phi/2) * A[j][ic])
A[j][ic] = A[j][ic] + sinphi * (ftmp - tanhalfphi * A[j][ic]);
}
for (j = ic + 1; j < n; j++)
{
// store A[ir][j]
ftmp = A[ir][j];
// A[ir][j] = A[ir][j] - sin(phi) * (A[ic][j] + tan(phi/2) * A[ir][j])
A[ir][j] = ftmp - sinphi * (A[ic][j] + tanhalfphi * ftmp);
// A[ic][j] = A[ic][j] + sin(phi) * (A[ir][j] - tan(phi/2) * A[ic][j])
A[ic][j] = A[ic][j] + sinphi * (ftmp - tanhalfphi * A[ic][j]);
}
} // end of test for matrix element already zero
} // end of loop over columns
} // end of loop over rows
} // end of test for non-zero residue
} while ((residue > 0.0F) && (ctr++ < NITERATIONS)); // end of main loop
return;
}
// function uses Gauss-Jordan elimination to compute the inverse of matrix A in situ
// on exit, A is replaced with its inverse
void fmatrixAeqInvA(float *A[], int8 iColInd[], int8 iRowInd[], int8 iPivot[], int8 isize, int8 *pierror)
{
float largest; // largest element used for pivoting
float scaling; // scaling factor in pivoting
float recippiv; // reciprocal of pivot element
float ftmp; // temporary variable used in swaps
int8 i, j, k, l, m; // index counters
int8 iPivotRow, iPivotCol; // row and column of pivot element
// to avoid compiler warnings
iPivotRow = iPivotCol = 0;
// default to successful inversion
*pierror = false;
// initialize the pivot array to 0
for (j = 0; j < isize; j++)
{
iPivot[j] = 0;
}
// main loop i over the dimensions of the square matrix A
for (i = 0; i < isize; i++)
{
// zero the largest element found for pivoting
largest = 0.0F;
// loop over candidate rows j
for (j = 0; j < isize; j++)
{
// check if row j has been previously pivoted
if (iPivot[j] != 1)
{
// loop over candidate columns k
for (k = 0; k < isize; k++)
{
// check if column k has previously been pivoted
if (iPivot[k] == 0)
{
// check if the pivot element is the largest found so far
if (fabsf(A[j][k]) >= largest)
{
// and store this location as the current best candidate for pivoting
iPivotRow = j;
iPivotCol = k;
largest = (float) fabsf(A[iPivotRow][iPivotCol]);
}
}
else if (iPivot[k] > 1)
{
// zero determinant situation: exit with identity matrix and set error flag
fmatrixAeqI(A, isize);
*pierror = true;
return;
}
}
}
}
// increment the entry in iPivot to denote it has been selected for pivoting
iPivot[iPivotCol]++;
// check the pivot rows iPivotRow and iPivotCol are not the same before swapping
if (iPivotRow != iPivotCol)
{
// loop over columns l
for (l = 0; l < isize; l++)
{
// and swap all elements of rows iPivotRow and iPivotCol
ftmp = A[iPivotRow][l];
A[iPivotRow][l] = A[iPivotCol][l];
A[iPivotCol][l] = ftmp;
}
}
// record that on the i-th iteration rows iPivotRow and iPivotCol were swapped
iRowInd[i] = iPivotRow;
iColInd[i] = iPivotCol;
// check for zero on-diagonal element (singular matrix) and return with identity matrix if detected
if (A[iPivotCol][iPivotCol] == 0.0F)
{
// zero determinant situation: exit with identity matrix and set error flag
fmatrixAeqI(A, isize);
*pierror = true;
return;
}
// calculate the reciprocal of the pivot element knowing it's non-zero
recippiv = 1.0F / A[iPivotCol][iPivotCol];
// by definition, the diagonal element normalizes to 1
A[iPivotCol][iPivotCol] = 1.0F;
// multiply all of row iPivotCol by the reciprocal of the pivot element including the diagonal element
// the diagonal element A[iPivotCol][iPivotCol] now has value equal to the reciprocal of its previous value
for (l = 0; l < isize; l++)
{
if (A[iPivotCol][l] != 0.0F)
A[iPivotCol][l] *= recippiv;
}
// loop over all rows m of A
for (m = 0; m < isize; m++)
{
if (m != iPivotCol)
{
// scaling factor for this row m is in column iPivotCol
scaling = A[m][iPivotCol];
// zero this element
A[m][iPivotCol] = 0.0F;
// loop over all columns l of A and perform elimination
for (l = 0; l < isize; l++)
{
if ((A[iPivotCol][l] != 0.0F) && (scaling != 0.0F))
A[m][l] -= A[iPivotCol][l] * scaling;
}
}
}
} // end of loop i over the matrix dimensions
// finally, loop in inverse order to apply the missing column swaps
for (l = isize - 1; l >= 0; l--)
{
// set i and j to the two columns to be swapped
i = iRowInd[l];
j = iColInd[l];
// check that the two columns i and j to be swapped are not the same
if (i != j)
{
// loop over all rows k to swap columns i and j of A
for (k = 0; k < isize; k++)
{
ftmp = A[k][i];
A[k][i] = A[k][j];
A[k][j] = ftmp;
}
}
}
return;
}