-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.lua
48 lines (39 loc) · 1.24 KB
/
main.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
require 'optim'
require 'model'
require 'MnistLoader'
local Trainer = require 'train'
torch.setdefaulttensortype('torch.FloatTensor')
cmd = torch.CmdLine()
cmd:option('-gpuid', 0, 'GPU ID (only using cuda)')
cmd:option('-batch_size', 100, 'batch size')
cmd:option('-num_labels', 100, 'batch size')
cmd:option('-learning_rate', 0.0002, 'learning rate')
cmd:option('-comb_func', 'vanilla-randinit', 'combinator function g')
cmd:option('-lr_decay_iter', 50000, 'learning rate decay iter')
cmd:option('-max_iterations', 75000, 'number of training iteration')
opt = cmd:parse(arg)
model, criterion = createLadderAE{noise_level=0.3, comb_func=opt.comb_func}
if opt.gpuid >= 0 then
require 'cunn'
cutorch.setDevice(opt.gpuid+1)
model:cuda()
criterion:cuda()
end
local trainer = Trainer.new(model, criterion, opt)
local test_loader = MnistLoader('test', opt.batch_size, -1)
function test()
test_loader:reset()
model:evaluate()
local cfm = optim.ConfusionMatrix(10)
for t = 1,test_loader.num_batches do
local x, y = test_loader:next_batch(opt.gpuid)
local pred = model:forward(x)[1]
cfm:batchAdd(pred, y)
end
print('Test confusion matrix:')
print(cfm)
return cfm.totalValid
end
for i = 1,opt.max_iterations do
trainer:train()
end