-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummary.py
29 lines (25 loc) · 1.29 KB
/
summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#--------------------------------------------#
# 该部分代码只用于看网络结构,并非测试代码
#--------------------------------------------#
import torch
from thop import clever_format, profile
from torchsummary import summary
from nets.facenet import Facenet
if __name__ == "__main__":
input_shape = [160, 160]
backbone = 'mobilenet'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Facenet(num_classes = 10575, backbone = backbone).to(device)
summary(model, (3, input_shape[0], input_shape[1]))
dummy_input = torch.randn(1, 3, input_shape[0], input_shape[1]).to(device)
flops, params = profile(model.to(device), (dummy_input, ), verbose=False)
#--------------------------------------------------------#
# flops * 2是因为profile没有将卷积作为两个operations
# 有些论文将卷积算乘法、加法两个operations。此时乘2
# 有些论文只考虑乘法的运算次数,忽略加法。此时不乘2
# 本代码选择乘2,参考YOLOX。
#--------------------------------------------------------#
flops = flops * 2
flops, params = clever_format([flops, params], "%.3f")
print('Total GFLOPS: %s' % (flops))
print('Total params: %s' % (params))