-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathcantor set.py
73 lines (52 loc) · 1.53 KB
/
cantor set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# coding: utf-8
# In[1]:
#fractal is one of the interesting topics in geometry
#it is usually described by a recursive function
#voila,here we are!
import matplotlib.pyplot as plt
# In[2]:
#initialize
x1=0
x2=3
y=0
bar_height=5
between_interval=10
n=6
# In[3]:
#cantor set is one of the simplest fractal shape
#at each iteration,we divide each bar into three equal parts
#we remove the mid part from each bar and keep the rest
#this effectively creates a binary tree
#check the link below for more details on math
# https://www.math.stonybrook.edu/~scott/Book331/Cantor_sets.html
def cantor_set(x1,x2,y,n,
bar_height=5,between_interval=10):
#base case
if n==0:
return
else:
#viz the first 1/3 and the last 1/3
plt.fill_between([x1,x1+(x2-x1)/3],
[y-between_interval]*2,
[y-bar_height-between_interval]*2,)
plt.fill_between([x2-(x2-x1)/3,x2],
[y-between_interval]*2,
[y-bar_height-between_interval]*2,)
#recursion
cantor_set(x1,x1+(x2-x1)/3,
y-between_interval,
n-1)
cantor_set(x2-(x2-x1)/3,x2,
y-between_interval,
n-1)
# In[4]:
#viz
#as n increases
#the bar gets too slim to be visible
ax=plt.figure(figsize=(10,10))
plt.fill_between([x1,x2],
[y]*2,
[y-bar_height]*2,)
cantor_set(x1,x2,y,n)
plt.axis('off')
plt.show()