-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathwavefront.cl
287 lines (269 loc) · 10.3 KB
/
wavefront.cl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
// basic gpu-side path tracing (wavefront)
// Used by tiny_bvh_gpu.cpp
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable
#include "traverse.cl"
#include "tools.cl"
#define PATH_LAST_SPECULAR 1 // previous vertex was camera or mirror
#define PATH_VIA_DIFFUSE 2 // path has at least one diffuse vertex
#define MATERIAL_LIGHT 1 // material emits light - end of path
#define MATERIAL_SPECULAR 2 // material is pure specular
// rendering parameters
float4 eye, C, p0, p1, p2;
uint frameIdx, width, height, dummy3;
global float4* cwbvhNodes;
global float4* cwbvhTris;
global uint* blueNoise;
global volatile int extendTasks, shadeTasks, connectTasks; // atomic counters
const float3 lightColor = (float3)(25,25,22);
const float3 lightPos = (float3)(-22, 12, 2);
// Blue noise interface for fixed 128x128x8 dataset.
float2 Noise( const uint x, const uint y, const uint page /* 0..7 */ )
{
const uint ix = x & 127, iy = y & 127;
const uint v2 = blueNoise[(page << 14) + (iy << 7) + ix];
const uint r = v2 >> 16, g = (v2 >> 8) & 255;
return (float2)( (float)r * 0.00392f, (float)g * 0.00392f );
}
// PathState: path throughput, current extension ray, pixel index
struct PathState
{
float4 T; // xyz = rgb, postponed MIS pdf in w
float4 O; // O.w: 24-bit pixel index, 4-bit path depth, 4-bit path flags
float4 D; // t in D.w
float4 hit;
};
// Potential contribution: shadoww ray origin & dir, throughput
struct Potential
{
float4 T;
float4 O; // pixel index in O.w
float4 D; // t in D.w
};
// atomic counter management - prepare for primary ray wavefront
void kernel SetRenderData( int _primaryRayCount,
float4 _eye, float4 _p0, float4 _p1, float4 _p2, uint _frameIdx, uint _width, uint _height,
global float4* _cwbvhNodes, global float4* _cwbvhTris, global uint* _blueNoise
)
{
if (get_global_id( 0 ) != 0) return;
// set camera parameters
eye = _eye, p0 = _p0, p1 = _p1, p2 = _p2;
frameIdx = _frameIdx, width = _width, height = _height;
// set BVH pointers
cwbvhNodes = _cwbvhNodes;
cwbvhTris = _cwbvhTris;
blueNoise = _blueNoise;
// initialize atomic counters
extendTasks = shadeTasks = _primaryRayCount;
connectTasks = 0;
}
// clear accumulator
void kernel Clear( global float4* accumulator )
{
const uint pixelIdx = get_global_id( 0 );
accumulator[pixelIdx] = (float4)(0);
}
// primary ray generation
void kernel Generate( global struct PathState* raysOut, uint frameSeed )
{
const uint x = get_global_id( 0 ), y = get_global_id( 1 );
const uint id = x + y * get_global_size( 0 );
uint seed = WangHash( id * 13131 + frameSeed );
const float u = ((float)x + RandomFloat( &seed )) / (float)get_global_size( 0 );
const float v = ((float)y + RandomFloat( &seed )) / (float)get_global_size( 1 );
const float4 P = p0 + u * (p1 - p0) + v * (p2 - p0);
raysOut[id].T = (float4)(1, 1, 1, 1 );
raysOut[id].O = (float4)(eye.xyz, as_float( (id << 8) + PATH_LAST_SPECULAR ));
raysOut[id].D = (float4)(fast_normalize( P.xyz - eye.xyz ), 1e30f);
raysOut[id].hit = (float4)(1e30f, 0, 0, as_float( 0 ));
}
// extend: trace the generated rays to find the nearest intersection point.
void kernel Extend( global struct PathState* raysIn )
{
// we use a worker thread system here, where a fixed number of threads 'fight for food'
// by decreasing an atomic counter. This way, the counter can stay on the GPU, saving
// expensive transfers: The host doesn't need to know the exact amount of tasks.
while (1)
{
// obtain task
if (extendTasks < 1) break;
const int pathId = atomic_dec( &extendTasks ) - 1;
if (pathId < 0) break; // someone else could have decreased it before us.
const float4 O4 = raysIn[pathId].O;
const float4 D4 = raysIn[pathId].D;
#ifdef SIMD_AABBTEST
const float4 rD4 = native_recip( D4 );
raysIn[pathId].hit = traverse_cwbvh( cwbvhNodes, cwbvhTris, O4, D4, rD4, 1e30f );
#else
const float3 rD = native_recip( D4.xyz );
raysIn[pathId].hit = traverse_cwbvh( cwbvhNodes, cwbvhTris, O4.xyz, D4.xyz, rD, 1e30f );
#endif
}
}
// lightpdf: approximate probability density of hemisphere directions towards light.
float LightPDF( const float distance, const float3 D )
{
float solidAngle = min( TWOPI, 9 * 5 * (1.0f / (distance * distance)) * fabs( D.y ) /* NLdotL */ );
return 1 / solidAngle;
}
// syncing counters: at this point, we need to reset the extendTasks and connectTasks counters.
void kernel UpdateCounters1() { if (get_global_id( 0 ) == 0) extendTasks = 0; }
// shade: process intersection results; this evaluates the BRDF and creates
// extension rays and shadow rays.
void kernel Shade( global float4* accumulator,
global struct PathState* raysIn, global struct PathState* raysOut,
global struct Potential* shadowOut, global float4* verts, uint sampleIdx )
{
while (1)
{
// obtain task - see note on worker threads in Extend
if (shadeTasks < 1) break;
const int pathId = atomic_dec( &shadeTasks ) - 1;
if (pathId < 0) break;
// fetch path data
float4 T4 = raysIn[pathId].T; // xyz = rgb, postponed pdf in w
float4 O4 = raysIn[pathId].O; // pixel index in O.w
float4 D4 = raysIn[pathId].D; // t in D.w
float4 hit = raysIn[pathId].hit; // dist, u, v, prim
// prepare for shading
uint pathState = as_uint( O4.w );
uint pixelIdx = pathState >> 8;
uint depth = (pathState >> 4) & 15;
uint seed = WangHash( as_uint( O4.w ) + frameIdx * 17117 );
float3 T = T4.xyz;
float t = hit.x;
// end path on sky
if (t == 1e30f)
{
float3 skyColor = (float3)(0.7f, 0.7f, 1.2f);
accumulator[pixelIdx] += (float4)(T * skyColor, 1);
continue;
}
// fetch geometry at intersection point
uint vertIdx = as_uint( hit.w ) * 3;
float4 v0 = verts[vertIdx];
uint materialType = as_uint( v0.w ) >> 24;
float brdfPDF = T4.w;
float3 D = D4.xyz;
// end path on light
if (materialType == MATERIAL_LIGHT)
{
float MISweight;
if (pathState & PATH_LAST_SPECULAR)
{
// we came via a mirror; there is no alternative technique.
MISweight = 1;
}
else
{
// two techniques could have taken us here; apply MIS.
float lightPDF = LightPDF( D4.w, D );
MISweight = 1 / (lightPDF + brdfPDF);
}
accumulator[pixelIdx] += (float4)(T * MISweight * lightColor, 1);
continue;
}
// apply postponed hemisphere PDF
T *= 1.0f / brdfPDF;
// generate four random numbers
float r0, r1, r2, r3;
if (depth == 0 && sampleIdx < 4)
{
float2 noise0 = Noise( pixelIdx % height, pixelIdx / height, sampleIdx * 2 );
float2 noise1 = Noise( pixelIdx % height, pixelIdx / height, sampleIdx * 2 + 1 );
r0 = noise0.x, r1 = noise0.y;
r2 = noise0.x, r3 = noise0.y;
}
else
{
r0 = RandomFloat( &seed ), r1 = RandomFloat( &seed );
r2 = RandomFloat( &seed ), r3 = RandomFloat( &seed );
}
// prepare data for bounce
float3 vert0 = v0.xyz, vert1 = verts[vertIdx + 1].xyz, vert2 = verts[vertIdx + 2].xyz;
float3 I = O4.xyz + t * D;
float3 N = fast_normalize( cross( vert1 - vert0, vert2 - vert0 ) );
if (dot( N, D ) > 0) N *= -1;
float3 materialColor = rgb32_to_vec3( as_uint( v0.w ) );
float3 BRDF = materialColor * INVPI; // lambert BRDF: albedo / pi
// direct illumination: next event estimation
if (materialType != MATERIAL_SPECULAR)
{
float3 P = lightPos + (float3)(r0 * 9.0f - 4.5f, 0, r1 * 5.0f - 2.5f);
float3 L = P - I;
float dist2 = dot( L, L ), dist = sqrt( dist2 );
L *= native_recip( dist );
float NdotL = dot( N, L );
if (NdotL > 0)
{
// use MIS pdf to calculate potential direct light contribution
float lightPDF = LightPDF( dist, L );
float brdfPDF = dot( L, N ) * INVPI;
float3 contribution = T * lightColor * BRDF * (NdotL / (lightPDF + brdfPDF));
uint newShadowIdx = atomic_inc( &connectTasks );
shadowOut[newShadowIdx].T = (float4)(contribution, 0);
shadowOut[newShadowIdx].O = (float4)(I + L * EPSILON, as_float( pixelIdx ));
shadowOut[newShadowIdx].D = (float4)(L, dist - 2 * EPSILON);
}
}
// handle pure specular BRDF
if (depth >= 3) continue;
if (materialType == MATERIAL_SPECULAR)
{
uint newRayIdx = atomic_inc( &extendTasks );
float3 R = Reflect( D, N );
raysOut[newRayIdx].T = (float4)(T * materialColor, 1);
raysOut[newRayIdx].O = (float4)(I + R * EPSILON, as_float( (pixelIdx << 8) + ((depth + 1) << 4) + PATH_LAST_SPECULAR ));
raysOut[newRayIdx].D = (float4)(R, 1e30f);
}
else /* materialType == MATERIAL_DIFFUSE */ if ((pathState & PATH_VIA_DIFFUSE) == 0 )
{
uint newRayIdx = atomic_inc( &extendTasks );
float3 R = CosWeightedDiffReflection( N, r2, r3 );
float PDF = dot( N, R ) * INVPI;
T *= dot( N, R ) * BRDF;
raysOut[newRayIdx].T = (float4)(T, PDF /* for MIS, we postpone the pdf until after light sampling */ );
raysOut[newRayIdx].O = (float4)(I + R * EPSILON, as_float( (pixelIdx << 8) + ((depth + 1) << 4) + PATH_VIA_DIFFUSE ));
raysOut[newRayIdx].D = (float4)(R, 1e30f);
}
}
}
// syncing counters: we generated extensions; those will need shading too.
void kernel UpdateCounters2()
{
if (get_global_id( 0 ) != 0) return;
shadeTasks = extendTasks;
}
// connect: trace shadow rays and deposit their potential contribution to the pixels
// if not occluded.
void kernel Connect( global float4* accumulator, global struct Potential* shadowIn )
{
while (1)
{
// obtain task - see note on worker threads in Extend
if (connectTasks < 1) break;
const int rayId = atomic_dec( &connectTasks ) - 1;
if (rayId < 0) break;
const float4 T4 = shadowIn[rayId].T, O4 = shadowIn[rayId].O, D4 = shadowIn[rayId].D;
#ifdef SIMD_AABBTEST
const float4 rD4 = native_recip( D4 );
if (isoccluded_cwbvh( cwbvhNodes, cwbvhTris, O4, D4, rD4, D4.w )) continue;
#else
const float3 rD = native_recip( D4.xyz );
if (isoccluded_cwbvh( cwbvhNodes, cwbvhTris, O4.xyz, D4.xyz, rD, D4.w )) continue;
#endif
accumulator[as_uint( O4.w )] += T4;
}
}
// finalize: convert the accumulated values into final pixel values.
// NOTE: rendering result is emitted to global uint array, which needs to be copied back
// to the host. This is not efficient. A proper scheme should use OpenGL / D3D / Vulkan
// interop do write directly to a texture.
void kernel Finalize( global float4* accumulator, const float scale, global uint* pixels )
{
const uint x = get_global_id( 0 ), y = get_global_id( 1 );
const uint pixelIdx = x + y * get_global_size( 0 );
const float4 p = accumulator[pixelIdx] * scale;
int3 rgb = convert_int3( min( sqrt( p.xyz ), (float3)(1.0f, 1.0f, 1.0f) ) * 255.0f );
pixels[pixelIdx] = (rgb.x << 16) + (rgb.y << 8) + rgb.z;
}