-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_ave.py
182 lines (158 loc) · 8.77 KB
/
test_ave.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import numpy as np
import os, copy
import torch
import argparse
import logging
import utils
import data
import engine
from vocab import deserialize_vocab
def parser_options():
# Hyper Parameters setting
parser = argparse.ArgumentParser()
# training path setting
parser.add_argument('-g', '--gpuid', default=1, type=int, help="which gpu to use")
parser.add_argument('-e', '--experiment_name', default='SWAN', type=str, help="Model Name")
parser.add_argument('-m', '--model_name', default='SWAN', type=str, help="Model Name")
parser.add_argument('--ckpt_save_path', default='./checkpoint/', type=str,
help="the path of ckpt save.eg.(./checkpoint/ or ./checkpoint_fix_data/)")
parser.add_argument('--data_name', default='rsicd', type=str, help="Dataset Name.(eg.rsitmd or rsicd)")
parser.add_argument('--k_fold_nums', default=3, type=int, help="the total num of k_flod")
parser.add_argument('--resnet_ckpt', default='./layers/aid_28-rsp-resnet-50-ckpt.pth', type=str,
help="restnet pre model path.eg.(aid_28-rsp-resnet-50-ckpt.pth / resnet50-19c8e357.pth)")
# --------------------------------------------------------------------------------------------------------
parser.add_argument('--resume', default=False, type=str, help="the pre-trained model path")
parser.add_argument('--data_path', default='./data/', type=str, help=" Preprocessed data")
parser.add_argument('--image_path', default='../rs_data/', type=str, help="images data path")
parser.add_argument('--vocab_path', default='./vocab/', type=str, help="vocab data path")
parser.add_argument('--epochs', default=100, type=int, help="the epochs of train")
parser.add_argument('--eval_step', default=1, type=int, help="the epochs of eval")
parser.add_argument('--batch_size', default=100, type=int, help="Batch train size")
parser.add_argument('--batch_size_val', default=100, type=int, help="Batch val size")
parser.add_argument('--shard_size', default=128, type=int, help="Batch shard size")
parser.add_argument('--workers', default=3, type=int, help="the worker num of dataloader")
parser.add_argument('--k_fold_current_num', default=0, type=int, help="current num of k_fold")
# GPU setting
parser.add_argument('--distributed', default=False, action='store_true')
parser.add_argument('--init_method', default='tcp://localhost:18888', help="init-method")
parser.add_argument('--rank', default=0, type=int, help='rank of current process')
parser.add_argument('--world_size', default=2, type=int, help="world size")
parser.add_argument('--use_mix_precision', default=False, action='store_true', help="whether to use mix precision")
# Model parameter setting
parser.add_argument('--embed_dim', default=512, type=int, help="the total num of k_flod")
parser.add_argument('--margin', default=0.2, type=float)
parser.add_argument('--max_violation', default=0, type=int)
parser.add_argument('--grad_clip', default=0, type=int)
parser.add_argument('--seed', default=0, type=int, help='random seed')
parser.add_argument('--il_measure', default=False, help='Similarity measure used (cosine|l1|l2|msd)')
# RNN laguage model parameter
parser.add_argument('--word_dim', default=300, type=int,
help='Dimensionality of the word embedding.(e.g. 300, 512)')
parser.add_argument('--use_bidirectional_rnn', default=True, type=str)
parser.add_argument('--num_layers', default=1, type=int, help='Number of GRU layers.')
parser.add_argument('--is_finetune', default=False, type=str, help='Finetune resnet or not')
## no set setting
parser.add_argument('--logger_name', default='logs/', type=str, help="the path of logs")
parser.add_argument('--print_freq', default=10, type=int)
parser.add_argument('--lr', default=0.0002, type=float, help="learning rate")
parser.add_argument('--lr_update_epoch', default=20, type=int, help="the update epoch of learning rate")
parser.add_argument('--lr_decay_param', default=0.7, type=float, help="the decay_param of learning rate")
# SWAN 对比实验调参变量
parser.add_argument('--sk_1', default=2, type=int)
parser.add_argument('--sk_2', default=3, type=int)
# SCAN 超参
parser.add_argument('--cross_attn', default="t2i", help='t2i|i2t')
parser.add_argument('--agg_func', default="LogSumExp", help='LogSumExp|Mean|Max|Sum')
parser.add_argument('--lambda_lse', default=6., type=float, help='LogSumExp temp.')
parser.add_argument('--lambda_softmax', default=9., type=float, help='Attention softmax temperature.')
parser.add_argument('--raw_feature_norm', default="softmax",
help='clipped_l2norm|l2norm|clipped_l1norm|l1norm|no_norm|softmax')
args = parser.parse_args()
# choose dataset
args.data_path = args.data_path + args.data_name + '_precomp/'
args.image_path = args.image_path + args.data_name + '/images/'
args.vocab_path = args.vocab_path + args.data_name + '_splits_vocab.json'
# Print arguments
print('-------------------------')
print('# Hyper Parameters setting')
for k in args.__dict__:
print(k + ": " + str(args.__dict__[k]))
print('-------------------------')
print('')
return args
def main(args):
# choose model
if args.model_name == "SWAN":
from layers import SWAN as models
else:
raise NotImplementedError
# make vocab
vocab = deserialize_vocab(args.vocab_path)
# Create dataset, model, criterion and optimizer
test_loader = data.get_test_loader(args, vocab)
model = models.factory(args,
vocab.word2idx,
cuda=True,
data_parallel=args.distributed)
print("Total Params: ", sum(p.numel() for p in model.parameters()))
print("Total Requires_grad Params: ", sum(p.numel() for p in model.parameters() if p.requires_grad))
best_rsum = 0
best_epoch = 0
# optionally resume from a checkpoint
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
best_rsum = checkpoint['best_rsum']
best_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model'])
print('====== best rsum is : {:.2f}, best epoch is {} ======='.format(best_rsum, best_epoch))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# evaluate on test set
sims = engine.test(args, test_loader, model)
# get indicators
(r1i, r5i, r10i, medri, meanri), _ = utils.acc_i2t(sims)
logging.info("Image to text: %.1f, %.1f, %.1f, %.1f, %.1f" %
(r1i, r5i, r10i, medri, meanri))
(r1t, r5t, r10t, medrt, meanrt), _ = utils.acc_t2i(sims)
logging.info("Text to image: %.1f, %.1f, %.1f, %.1f, %.1f" %
(r1t, r5t, r10t, medrt, meanrt))
currscore = (r1t + r5t + r10t + r1i + r5i + r10i) / 6.0
all_score = "i2t => r1i:{:.2f} r5i:{:.2f} r10i:{:.2f} medri:{:.2f} meanri:{:.2f}\n" \
"t2i => r1t:{:.2f} r5t:{:.2f} r10t:{:.2f} medrt:{:.2f} meanrt:{:.2f}\n" \
"mR:{:.2f}\n".format(r1i, r5i, r10i, medri, meanri, r1t, r5t, r10t, medrt, meanrt, currscore)
print(all_score)
curr_kf = args.k_fold_current_num
return [curr_kf, best_epoch, best_rsum, r1i, r5i, r10i, r1t, r5t, r10t, currscore]
def update_options_savepath(args, k):
args_new = copy.deepcopy(args)
args_new.k_fold_current_num = k
args_new.resume = args.ckpt_save_path + args.data_name + '/' + args.experiment_name + "/" + str(k) \
+ "/" + args.model_name + '_best.pth.tar'
return args_new
if __name__ == '__main__':
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
args = parser_options()
# calc ave k results
last_score = []
for k in range(args.k_fold_nums):
print("Start evaluate {}th fold".format(k))
# update save path
args = update_options_savepath(args, k)
print(args.ckpt_save_path)
# run experiment
one_score = main(args)
last_score.append(one_score)
print("Complete evaluate {}th fold".format(k))
# caculate average score
print("===================== Ave Score ({}-fold verify) =================".format(args.k_fold_nums))
last_score_ = np.average(last_score, axis=0)
last_score.append([])
last_score.append(list(last_score_))
names = ['curr_kf', 'best_epoch', 'best_rsum', 'r1i', 'r5i', 'r10i', 'r1t', 'r5t', 'r10t', 'mr']
# print avg result
for name, score in zip(names, last_score_):
print("{}:{:.2f}".format(name, score))
# save result to excel_file
file_name = args.data_name + '_' + args.model_name + '_' + args.experiment_name
utils.write_excel_file(args.ckpt_save_path, file_name, names, last_score)