-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsave_img_text_emb.py
135 lines (115 loc) · 6.37 KB
/
save_img_text_emb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import os
import torch
import argparse
import utils
import data
import engine
from vocab import deserialize_vocab
def parser_options():
# Hyper Parameters setting
parser = argparse.ArgumentParser()
##################################################################################
## training path setting
parser.add_argument('-g','--gpuid', default=0, type=int, help="which gpu to use")
parser.add_argument('-e', '--experiment_name', default='MSSF_V2', type=str, help="the file name of ckpt save")
parser.add_argument('-m', '--model_name', default='MSSF_V2_save', type=str, help="Model Name")
parser.add_argument('--data_name', default='rsitmd', type=str, help="Dataset Name.(eg: rsitmd or rsicd)")
parser.add_argument('--k_fold_current_num', default=0, type=int, help="current num of k_fold")
parser.add_argument('--ckpt_save_path', default='./checkpoint_fix_data/', type=str, help="the path of ckpt save")
# if not use resume, the path also be generated
parser.add_argument('--resume', default='./checkpoint_fix_data/rsitmd/MSSF_V2/0/MSSF_V2_best.pth.tar', type=str,
help="the model path.(eg:./checkpoint/rsitmd/MSSF/0/MSSF_best.pth.tar)")
#--------------------------------------------------------------------------------------------------------
parser.add_argument('--data_path', default='./fix_data/', type=str, help=" Preprocessed data")
parser.add_argument('--image_path', default='../rs_data/', type=str, help="images data path")
parser.add_argument('--vocab_path', default='./vocab/', type=str, help="vocab data path")
parser.add_argument('--resnet_ckpt', default='./layers/aid_28-rsp-resnet-50-ckpt.pth', type=str,
help="restnet pre model path")
parser.add_argument('--batch_size', default=100, type=int, help="Batch train size")
parser.add_argument('--batch_size_val', default=100, type=int, help="Batch val size")
parser.add_argument('--shard_size', default=128, type=int, help="Batch shard size")
parser.add_argument('--workers', default=3, type=int, help="the worker num of dataloader")
parser.add_argument('--k_fold_nums', default=3, type=int, help="the total num of k_flod")
# GPU setting
parser.add_argument('--distributed', default=False, action='store_true')
parser.add_argument('--init_method', default='tcp://localhost:18888', help="init-method")
parser.add_argument('--rank', default=0, type=int, help='rank of current process')
parser.add_argument('--world_size', default=2, type=int, help="world size")
parser.add_argument('--use_mix_precision', default=False, action='store_true', help="whether to use mix precision")
# Model parameter setting
parser.add_argument('--embed_dim', default=512, type=int, help="the total num of k_flod")
parser.add_argument('--margin', default=0.2, type=float)
parser.add_argument('--max_violation', default=False, action='store_true')
parser.add_argument('--grad_clip', default=0.0, type=float)
# RNN laguage model parameter
parser.add_argument('--word_dim', default=300, type=int, help='Dimensionality of the word embedding.(e.g. 300, 512)')
parser.add_argument('--use_bidirectional_rnn', default=True, type=str)
parser.add_argument('--num_layers', default=1, type=int, help='Number of GRU layers.')
parser.add_argument('--seed', default=0, type=int, help='random seed')
parser.add_argument('--il_measure', default=False, help='Similarity measure used (cosine|l1|l2|msd)')
parser.add_argument('--is_finetune', default=False, type=str, help='Finetune resnet or not')
args = parser.parse_args()
# choose dataset
args.data_path = args.data_path + args.data_name + '_precomp/'
args.image_path = args.image_path + args.data_name + '/images/'
args.vocab_path = args.vocab_path + args.data_name + '_splits_vocab.json'
if not args.resume:
args.resume = args.ckpt_save_path + args.data_name + '/' + args.experiment_name + '/' \
+ str(args.k_fold_current_num) + '/' + args.model_name + '_best.pth.tar'
print(args.resume)
# Print arguments
print('-------------------------')
print('# Hyper Parameters setting')
for k in args.__dict__:
print(k + ": " + str(args.__dict__[k]))
print('-------------------------')
print('')
return args
def main(args):
# create random seed
utils.setup_seed(args.seed)
# choose model
if args.model_name == "MSSF":
from layers import MSSF as models
elif args.model_name == "MSSF_V2":
from layers import MSSF_V2 as models
elif args.model_name == "MSSF_V2_wo_SFGS":
from layers import MSSF_V2_wo_SFGS as models
elif args.model_name == "MSSF_V2_wo_TCGE":
from layers import MSSF_V2_wo_TCGE as models
elif args.model_name == "MSSF_V2_wo_VMSF":
from layers import MSSF_V2_wo_VMSF as models
elif args.model_name == "MSSF_V2_rp_WSA_SA":
from layers import MSSF_V2_rp_WSA_SA as models
elif args.model_name == "MSSF_V2_save":
from layers import MSSF_V2_save as models
else:
raise NotImplementedError
# make vocab
vocab = deserialize_vocab(args.vocab_path)
# Create dataset, model, criterion and optimizer
test_loader = data.get_test_loader(args, vocab)
model = models.factory(args,
vocab.word2idx,
cuda=True,
data_parallel=False)
print("Total Params: ", sum(p.numel() for p in model.parameters()))
print("Total Requires_grad Params: ", sum(p.numel() for p in model.parameters() if p.requires_grad))
# optionally resume from a checkpoint
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location='cuda:{}'.format(args.gpuid))
model.load_state_dict(checkpoint['model'])
print('====== best rsum is : {:.2f}, epoch is {} ======='.format(checkpoint['best_rsum'],checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
img_emb, text_emb = engine.save(args, test_loader, model)
return img_emb, text_emb
if __name__ == '__main__':
args = parser_options()
# run experiment
img_emb, text_emb = main(args)
import mytools
mytools.save_to_npy(img_emb, "img_emb.npy")
mytools.save_to_npy(text_emb, "text_emb.npy")