-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheuler.py
271 lines (239 loc) · 5.65 KB
/
euler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from math import sqrt
from collections import Counter
def memoize(f):
results = {}
def helper(x):
if x not in results:
results[x] = f(x)
return results[x]
return helper
primes = []
def gen_prime():
for i in primes:
yield i
if not primes or primes[-1] < 2:
i = 2
primes.append(i)
yield i
i += 1
if i % 2 == 0:
i += 1
while True:
sqrt_i = int(sqrt(i))
for j in primes:
if j > sqrt_i:
primes.append(i)
yield i
break
elif i % j == 0:
break
i += 2
def get_primes():
return primes
def old_gen_prime():
primes = []
i = 2
primes.append(i)
yield primes[-1]
i = 3
while True:
for j in primes:
if j * j > i:
primes.append(i)
yield primes[-1]
break
elif i % j == 0:
break
i += 2
def old_get_factors(x):
factors = []
f = 2
while f * f <= x:
while x % f == 0:
factors.append(f)
x /= f
f += 1
if x != 1:
factors.append(x)
return factors
def get_factors2(x):
sqrt_x = int(sqrt(x))
factors = []
for p in gen_prime():
while p <= sqrt_x and x % p == 0:
factors.append(p)
x //= p
sqrt_x = int(sqrt(x))
if p * p > x:
break
if x != 1:
factors.append(x)
return factors
def greatest_common_divisor(a, b):
while True:
c = a % b
if c == 0:
return b
a, b = b, c
def get_factors3(x):
factors = []
for f in gen_prime():
while f * f <= x and x % f == 0:
factors.append(f)
x //= f
if f * f > x:
break
if x != 1:
factors.append(x)
return factors
_factors_cache = {}
def get_factors4(x):
if x in _factors_cache:
return _factors_cache[x]
original_x = x
factors = []
for f in gen_prime():
while f * f <= x and x % f == 0:
factors.append(f)
x //= f
# if x in _factors_cache:
# factors.extend(_factors_cache[x])
# _factors_cache[original_x] = factors
# return _factors_cache[x]
if f * f > x:
break
if x != 1:
factors.append(x)
_factors_cache[original_x] = factors
return factors
@memoize
def get_factors5(x):
factors = []
for f in gen_prime():
while f * f <= x and x % f == 0:
factors.append(f)
x //= f
if f * f > x:
break
if x != 1:
factors.append(x)
return factors
@memoize
def get_factors(x):
factors = []
for f in gen_prime():
while f * f <= x and x % f == 0:
factors.append(f)
x //= f
if f * f > x:
break
if x != 1:
factors.append(x)
return factors
def canonical_decomposition2(x):
'''
Returns dictionary where keys are primes and values are exponents.
[(prime, p[prime]) for prime in sorted(p)]
'''
factors = {}
for factor in get_factors2(x):
try:
factors[factor] += 1
except KeyError:
factors[factor] = 1
return factors
def canonical_decomposition3(x):
'''
Returns dictionary where keys are primes and values are exponents.
[(prime, p[prime]) for prime in sorted(p)]
'''
factors = {}
for factor in get_factors2(x):
if factor not in factors:
factors[factor] = 0
factors[factor] += 1
return factors
def canonical_decomposition4(x):
'''
Returns dictionary where keys are primes and values are exponents.
[(prime, p[prime]) for prime in sorted(p)]
'''
factors = Counter()
for factor in get_factors2(x):
factors[factor] += 1
return factors
def canonical_decomposition5(x):
factors = Counter()
for f in gen_prime():
while f * f <= x and x % f == 0:
factors[f] += 1
x //= f
if f * f > x:
break
if x != 1:
factors[x] += 1
return factors
def canonical_decomposition(x):
factors = {}
for f in gen_prime():
while f * f <= x and x % f == 0:
if f not in factors:
factors[f] = 0
factors[f] += 1
x //= f
if f * f > x:
break
if x != 1:
if x not in factors:
factors[x] = 0
factors[x] += 1
return factors
def gen_triangular():
i = 0
n = 1
while True:
i += n
yield i
n += 1
def direct_fibonacci(n):
'''
This is likely not accurate for other than small n.
'''
phi = (sqrt(5) + 1.) / 2.
return int(round((phi ** n) / sqrt(5)))
from math import sqrt, log, ceil
phi = (sqrt(5) + 1.) / 2.
def term_of_ndigits_fibonacci(ndigits):
return int(ceil((log(sqrt(5)) + (ndigits - 1) * log(10)) / log(phi)))
def gen_fibonacci():
a, b = 0, 1
while True:
a, b = b, a + b
yield b
def gen_even(gen):
for i in gen:
if i%2 == 0:
yield i
def gen_lte(gen, n):
for i in gen:
if i > n:
break
yield i
def gen_lt(gen, n):
for i in gen:
if i >= n:
break
yield i
def gen_n(gen, n):
for i in gen:
if n <= 0:
break
yield i
n -= 1
def make_square_roots(n):
return map((lambda x: (x*x, x)), range(n))
def product(x):
n = 1
for i in x:
n *= i
return n