-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTask 1 ANZ_EDA_Predictive_Analysis.ipynb .txt
3208 lines (3208 loc) · 973 KB
/
Task 1 ANZ_EDA_Predictive_Analysis.ipynb .txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv(r\"C:\\Users\\lenovo\\Downloads\\Virtual Internship 2020\\ANZ Virtual Internship\\ANZ_synthesised_transaction_dataset_raw.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>status</th>\n",
" <th>card_present_flag</th>\n",
" <th>bpay_biller_code</th>\n",
" <th>account</th>\n",
" <th>currency</th>\n",
" <th>long_lat</th>\n",
" <th>txn_description</th>\n",
" <th>merchant_id</th>\n",
" <th>merchant_code</th>\n",
" <th>first_name</th>\n",
" <th>...</th>\n",
" <th>age</th>\n",
" <th>merchant_suburb</th>\n",
" <th>merchant_state</th>\n",
" <th>extraction</th>\n",
" <th>amount</th>\n",
" <th>transaction_id</th>\n",
" <th>country</th>\n",
" <th>customer_id</th>\n",
" <th>merchant_long_lat</th>\n",
" <th>movement</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>authorized</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" <td>ACC-1598451071</td>\n",
" <td>AUD</td>\n",
" <td>153.41 -27.95</td>\n",
" <td>POS</td>\n",
" <td>81c48296-73be-44a7-befa-d053f48ce7cd</td>\n",
" <td>NaN</td>\n",
" <td>Diana</td>\n",
" <td>...</td>\n",
" <td>26</td>\n",
" <td>Ashmore</td>\n",
" <td>QLD</td>\n",
" <td>2018-08-01T01:01:15.000+0000</td>\n",
" <td>16.25</td>\n",
" <td>a623070bfead4541a6b0fff8a09e706c</td>\n",
" <td>Australia</td>\n",
" <td>CUS-2487424745</td>\n",
" <td>153.38 -27.99</td>\n",
" <td>debit</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>authorized</td>\n",
" <td>0.0</td>\n",
" <td>NaN</td>\n",
" <td>ACC-1598451071</td>\n",
" <td>AUD</td>\n",
" <td>153.41 -27.95</td>\n",
" <td>SALES-POS</td>\n",
" <td>830a451c-316e-4a6a-bf25-e37caedca49e</td>\n",
" <td>NaN</td>\n",
" <td>Diana</td>\n",
" <td>...</td>\n",
" <td>26</td>\n",
" <td>Sydney</td>\n",
" <td>NSW</td>\n",
" <td>2018-08-01T01:13:45.000+0000</td>\n",
" <td>14.19</td>\n",
" <td>13270a2a902145da9db4c951e04b51b9</td>\n",
" <td>Australia</td>\n",
" <td>CUS-2487424745</td>\n",
" <td>151.21 -33.87</td>\n",
" <td>debit</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>authorized</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" <td>ACC-1222300524</td>\n",
" <td>AUD</td>\n",
" <td>151.23 -33.94</td>\n",
" <td>POS</td>\n",
" <td>835c231d-8cdf-4e96-859d-e9d571760cf0</td>\n",
" <td>NaN</td>\n",
" <td>Michael</td>\n",
" <td>...</td>\n",
" <td>38</td>\n",
" <td>Sydney</td>\n",
" <td>NSW</td>\n",
" <td>2018-08-01T01:26:15.000+0000</td>\n",
" <td>6.42</td>\n",
" <td>feb79e7ecd7048a5a36ec889d1a94270</td>\n",
" <td>Australia</td>\n",
" <td>CUS-2142601169</td>\n",
" <td>151.21 -33.87</td>\n",
" <td>debit</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>3 rows × 23 columns</p>\n",
"</div>"
],
"text/plain": [
" status card_present_flag bpay_biller_code account currency \\\n",
"0 authorized 1.0 NaN ACC-1598451071 AUD \n",
"1 authorized 0.0 NaN ACC-1598451071 AUD \n",
"2 authorized 1.0 NaN ACC-1222300524 AUD \n",
"\n",
" long_lat txn_description merchant_id \\\n",
"0 153.41 -27.95 POS 81c48296-73be-44a7-befa-d053f48ce7cd \n",
"1 153.41 -27.95 SALES-POS 830a451c-316e-4a6a-bf25-e37caedca49e \n",
"2 151.23 -33.94 POS 835c231d-8cdf-4e96-859d-e9d571760cf0 \n",
"\n",
" merchant_code first_name ... age merchant_suburb merchant_state \\\n",
"0 NaN Diana ... 26 Ashmore QLD \n",
"1 NaN Diana ... 26 Sydney NSW \n",
"2 NaN Michael ... 38 Sydney NSW \n",
"\n",
" extraction amount transaction_id \\\n",
"0 2018-08-01T01:01:15.000+0000 16.25 a623070bfead4541a6b0fff8a09e706c \n",
"1 2018-08-01T01:13:45.000+0000 14.19 13270a2a902145da9db4c951e04b51b9 \n",
"2 2018-08-01T01:26:15.000+0000 6.42 feb79e7ecd7048a5a36ec889d1a94270 \n",
"\n",
" country customer_id merchant_long_lat movement \n",
"0 Australia CUS-2487424745 153.38 -27.99 debit \n",
"1 Australia CUS-2487424745 151.21 -33.87 debit \n",
"2 Australia CUS-2142601169 151.21 -33.87 debit \n",
"\n",
"[3 rows x 23 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head(3)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 12043 entries, 0 to 12042\n",
"Data columns (total 23 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 status 12043 non-null object \n",
" 1 card_present_flag 7717 non-null float64\n",
" 2 bpay_biller_code 885 non-null object \n",
" 3 account 12043 non-null object \n",
" 4 currency 12043 non-null object \n",
" 5 long_lat 12043 non-null object \n",
" 6 txn_description 12043 non-null object \n",
" 7 merchant_id 7717 non-null object \n",
" 8 merchant_code 883 non-null float64\n",
" 9 first_name 12043 non-null object \n",
" 10 balance 12043 non-null float64\n",
" 11 date 12043 non-null object \n",
" 12 gender 12043 non-null object \n",
" 13 age 12043 non-null int64 \n",
" 14 merchant_suburb 7717 non-null object \n",
" 15 merchant_state 7717 non-null object \n",
" 16 extraction 12043 non-null object \n",
" 17 amount 12043 non-null float64\n",
" 18 transaction_id 12043 non-null object \n",
" 19 country 12043 non-null object \n",
" 20 customer_id 12043 non-null object \n",
" 21 merchant_long_lat 7717 non-null object \n",
" 22 movement 12043 non-null object \n",
"dtypes: float64(4), int64(1), object(18)\n",
"memory usage: 1.3+ MB\n"
]
}
],
"source": [
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>card_present_flag</th>\n",
" <th>merchant_code</th>\n",
" <th>balance</th>\n",
" <th>age</th>\n",
" <th>amount</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>7717.000000</td>\n",
" <td>883.0</td>\n",
" <td>12043.000000</td>\n",
" <td>12043.000000</td>\n",
" <td>12043.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>0.802644</td>\n",
" <td>0.0</td>\n",
" <td>14704.195553</td>\n",
" <td>30.582330</td>\n",
" <td>187.933588</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.398029</td>\n",
" <td>0.0</td>\n",
" <td>31503.722652</td>\n",
" <td>10.046343</td>\n",
" <td>592.599934</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.240000</td>\n",
" <td>18.000000</td>\n",
" <td>0.100000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>1.000000</td>\n",
" <td>0.0</td>\n",
" <td>3158.585000</td>\n",
" <td>22.000000</td>\n",
" <td>16.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>1.000000</td>\n",
" <td>0.0</td>\n",
" <td>6432.010000</td>\n",
" <td>28.000000</td>\n",
" <td>29.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>1.000000</td>\n",
" <td>0.0</td>\n",
" <td>12465.945000</td>\n",
" <td>38.000000</td>\n",
" <td>53.655000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>1.000000</td>\n",
" <td>0.0</td>\n",
" <td>267128.520000</td>\n",
" <td>78.000000</td>\n",
" <td>8835.980000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" card_present_flag merchant_code balance age \\\n",
"count 7717.000000 883.0 12043.000000 12043.000000 \n",
"mean 0.802644 0.0 14704.195553 30.582330 \n",
"std 0.398029 0.0 31503.722652 10.046343 \n",
"min 0.000000 0.0 0.240000 18.000000 \n",
"25% 1.000000 0.0 3158.585000 22.000000 \n",
"50% 1.000000 0.0 6432.010000 28.000000 \n",
"75% 1.000000 0.0 12465.945000 38.000000 \n",
"max 1.000000 0.0 267128.520000 78.000000 \n",
"\n",
" amount \n",
"count 12043.000000 \n",
"mean 187.933588 \n",
"std 592.599934 \n",
"min 0.100000 \n",
"25% 16.000000 \n",
"50% 29.000000 \n",
"75% 53.655000 \n",
"max 8835.980000 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.describe()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"status 0\n",
"card_present_flag 4326\n",
"bpay_biller_code 11158\n",
"account 0\n",
"currency 0\n",
"long_lat 0\n",
"txn_description 0\n",
"merchant_id 4326\n",
"merchant_code 11160\n",
"first_name 0\n",
"balance 0\n",
"date 0\n",
"gender 0\n",
"age 0\n",
"merchant_suburb 4326\n",
"merchant_state 4326\n",
"extraction 0\n",
"amount 0\n",
"transaction_id 0\n",
"country 0\n",
"customer_id 0\n",
"merchant_long_lat 4326\n",
"movement 0\n",
"dtype: int64"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## Check total number of null values in dataframe\n",
"df.isnull().sum()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data Manipulation"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"ACC-1598451071 578\n",
"ACC-1222300524 303\n",
"ACC-182446574 292\n",
"ACC-4258502723 260\n",
"ACC-1037050564 259\n",
" ... \n",
"ACC-1998563091 40\n",
"ACC-3881031190 37\n",
"ACC-721712940 34\n",
"ACC-4059612845 31\n",
"ACC-1217063613 25\n",
"Name: account, Length: 100, dtype: int64"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## This is data set of 100 customers.\n",
"df['account'].value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Add month_number, week_day & hour column in df using date & extraction column"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"df[\"Month\"] = df[\"date\"].str[3:5]\n",
"df[\"Month\"] = df[\"Month\"].astype('int32')\n",
"\n",
"df['day'] = pd.DatetimeIndex(df['date']).day_name() \n",
"\n",
"df['Hour'] = df['extraction'].str[11:13]\n",
"df['Hour'] = pd.to_numeric(df[\"Hour\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create longitude & latitude columns and plot in a graph"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>status</th>\n",
" <th>card_present_flag</th>\n",
" <th>bpay_biller_code</th>\n",
" <th>account</th>\n",
" <th>currency</th>\n",
" <th>long_lat</th>\n",
" <th>txn_description</th>\n",
" <th>merchant_id</th>\n",
" <th>merchant_code</th>\n",
" <th>first_name</th>\n",
" <th>...</th>\n",
" <th>transaction_id</th>\n",
" <th>country</th>\n",
" <th>customer_id</th>\n",
" <th>merchant_long_lat</th>\n",
" <th>movement</th>\n",
" <th>Month</th>\n",
" <th>day</th>\n",
" <th>Hour</th>\n",
" <th>longitude</th>\n",
" <th>latitude</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>authorized</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" <td>ACC-1598451071</td>\n",
" <td>AUD</td>\n",
" <td>153.41 -27.95</td>\n",
" <td>POS</td>\n",
" <td>81c48296-73be-44a7-befa-d053f48ce7cd</td>\n",
" <td>NaN</td>\n",
" <td>Diana</td>\n",
" <td>...</td>\n",
" <td>a623070bfead4541a6b0fff8a09e706c</td>\n",
" <td>Australia</td>\n",
" <td>CUS-2487424745</td>\n",
" <td>153.38 -27.99</td>\n",
" <td>debit</td>\n",
" <td>8</td>\n",
" <td>Monday</td>\n",
" <td>1</td>\n",
" <td>153.41</td>\n",
" <td>27.95</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>authorized</td>\n",
" <td>0.0</td>\n",
" <td>NaN</td>\n",
" <td>ACC-1598451071</td>\n",
" <td>AUD</td>\n",
" <td>153.41 -27.95</td>\n",
" <td>SALES-POS</td>\n",
" <td>830a451c-316e-4a6a-bf25-e37caedca49e</td>\n",
" <td>NaN</td>\n",
" <td>Diana</td>\n",
" <td>...</td>\n",
" <td>13270a2a902145da9db4c951e04b51b9</td>\n",
" <td>Australia</td>\n",
" <td>CUS-2487424745</td>\n",
" <td>151.21 -33.87</td>\n",
" <td>debit</td>\n",
" <td>8</td>\n",
" <td>Monday</td>\n",
" <td>1</td>\n",
" <td>153.41</td>\n",
" <td>27.95</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>authorized</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" <td>ACC-1222300524</td>\n",
" <td>AUD</td>\n",
" <td>151.23 -33.94</td>\n",
" <td>POS</td>\n",
" <td>835c231d-8cdf-4e96-859d-e9d571760cf0</td>\n",
" <td>NaN</td>\n",
" <td>Michael</td>\n",
" <td>...</td>\n",
" <td>feb79e7ecd7048a5a36ec889d1a94270</td>\n",
" <td>Australia</td>\n",
" <td>CUS-2142601169</td>\n",
" <td>151.21 -33.87</td>\n",
" <td>debit</td>\n",
" <td>8</td>\n",
" <td>Monday</td>\n",
" <td>1</td>\n",
" <td>151.23</td>\n",
" <td>33.94</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>3 rows × 28 columns</p>\n",
"</div>"
],
"text/plain": [
" status card_present_flag bpay_biller_code account currency \\\n",
"0 authorized 1.0 NaN ACC-1598451071 AUD \n",
"1 authorized 0.0 NaN ACC-1598451071 AUD \n",
"2 authorized 1.0 NaN ACC-1222300524 AUD \n",
"\n",
" long_lat txn_description merchant_id \\\n",
"0 153.41 -27.95 POS 81c48296-73be-44a7-befa-d053f48ce7cd \n",
"1 153.41 -27.95 SALES-POS 830a451c-316e-4a6a-bf25-e37caedca49e \n",
"2 151.23 -33.94 POS 835c231d-8cdf-4e96-859d-e9d571760cf0 \n",
"\n",
" merchant_code first_name ... transaction_id country \\\n",
"0 NaN Diana ... a623070bfead4541a6b0fff8a09e706c Australia \n",
"1 NaN Diana ... 13270a2a902145da9db4c951e04b51b9 Australia \n",
"2 NaN Michael ... feb79e7ecd7048a5a36ec889d1a94270 Australia \n",
"\n",
" customer_id merchant_long_lat movement Month day Hour longitude \\\n",
"0 CUS-2487424745 153.38 -27.99 debit 8 Monday 1 153.41 \n",
"1 CUS-2487424745 151.21 -33.87 debit 8 Monday 1 153.41 \n",
"2 CUS-2142601169 151.21 -33.87 debit 8 Monday 1 151.23 \n",
"\n",
" latitude \n",
"0 27.95 \n",
"1 27.95 \n",
"2 33.94 \n",
"\n",
"[3 rows x 28 columns]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[\"longitude\"] = df[\"long_lat\"].str[:6]\n",
"df[\"latitude\"] = df[\"long_lat\"].str[8:]\n",
"df.head(3)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"## Make column numeric\n",
"df['longitude'] = pd.to_numeric(df[\"longitude\"]) \n",
"df['latitude'] = pd.to_numeric(df[\"latitude\"]) "
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"##Save in excel format i.e xlsx\n",
"df.to_csv('ANZ_dataset.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Find different category in categorical variables"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Unique values at column:- status\n",
"authorized 7717\n",
"posted 4326\n",
"Name: status, dtype: int64\n",
"----------------------------------\n",
"\n",
"Unique values at column:- card_present_flag\n",
"1.0 6194\n",
"0.0 1523\n",
"Name: card_present_flag, dtype: int64\n",
"----------------------------------\n",
"\n",
"Unique values at column:- txn_description\n",
"SALES-POS 3934\n",
"POS 3783\n",
"PAYMENT 2600\n",
"PAY/SALARY 883\n",
"INTER BANK 742\n",
"PHONE BANK 101\n",
"Name: txn_description, dtype: int64\n",
"----------------------------------\n",
"\n",
"Unique values at column:- gender\n",
"M 6285\n",
"F 5758\n",
"Name: gender, dtype: int64\n",
"----------------------------------\n",
"\n",
"Unique values at column:- merchant_state\n",
"NSW 2169\n",
"VIC 2131\n",
"QLD 1556\n",
"WA 1100\n",
"SA 415\n",
"NT 205\n",
"ACT 73\n",
"TAS 68\n",
"Name: merchant_state, dtype: int64\n",
"----------------------------------\n",
"\n",
"Unique values at column:- country\n",
"Australia 12043\n",
"Name: country, dtype: int64\n",
"----------------------------------\n",
"\n",
"Unique values at column:- currency\n",
"AUD 12043\n",
"Name: currency, dtype: int64\n",
"----------------------------------\n",
"\n",
"Unique values at column:- movement\n",
"debit 11160\n",
"credit 883\n",
"Name: movement, dtype: int64\n",
"----------------------------------\n",
"\n",
"Unique values at column:- Month\n",
"10 4087\n",
"9 4013\n",
"8 3943\n",
"Name: Month, dtype: int64\n",
"----------------------------------\n"
]
}
],
"source": [
"cols1 =['status','card_present_flag','txn_description','gender','merchant_state','country','currency','movement','Month']\n",
"\n",
"for i in cols1:\n",
" print('\\nUnique values at column:-',i)\n",
" print(df[i].value_counts())\n",
" print('----------------------------------')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Fill missing value in card_present_flage column by its mode value"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 1.0\n",
"dtype: float64"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## Find mode of card_present_flag column to fill misssing value\n",
"df['card_present_flag'].mode()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## Fill missing values with mode\n",
"df['card_present_flag'].fillna(df['card_present_flag'].median(), inplace=True)\n",
"\n",
"## Now, check missing values in column\n",
"df.card_present_flag.isnull().sum()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data Aggregation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Customers total salary in 3 months"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"account\n",
"ACC-1037050564 11597.17\n",
"ACC-1056639002 19170.06\n",
"ACC-1199531521 26500.46\n",
"ACC-1217063613 9727.24\n",
"ACC-1222300524 13027.69\n",
"Name: amount, dtype: float64"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result = df[df['txn_description'] == 'PAY/SALARY'].groupby('account')['amount'].sum()\n",
"result.head()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAENtJREFUeJzt3X+M5PVdx/HX27vjRxm6QKETXIgLpkGxa4EbCQ2mmYEKlGtEE0yO1JbWmk3UEprQxCONSv9oPE2paWNjgxahtjKtCJFwpXgRRtKkHO7Sgz16UA66pnfgXQj2YJCAV9/+MZ9rh2W+3/nOj+/OvofnI9nc7Pf7+X7n/Z7P7OtmPjOza+4uAEAcPzfpAgAAgyG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgtlYxklPPfVUn5ubK+PUpXrllVd0wgknTLqMsZrGniT6ioa++ltaWnrB3U8rMraU4J6bm9Pi4mIZpy5Vq9VSvV6fdBljNY09SfQVDX31Z2b/WXQsSyUAEAzBDQDBENwAEAzBDQDBENwAEEzf4Dazc8xsd9fXS2b2ybUoDgDwZn3fDujuT0k6T5LMbIOkA5LuLrkuAECGQZdKLpX0jLsXfr8hAGC8Bg3urZLuKKMQAEAxVvSPBZvZMZKek/Qr7n6wx/4FSQuSVK1WNzebzXHWORbLBw5n7pufnVG73ValUlnDiso3jT1J9BUNffXXaDSW3L1WZOwgwX2VpD9y98v6ja3Var4eP/I+t21H5r6V7Vum8mO509iTRF/R0Fd/ZlY4uAdZKrlGLJMAwMQVCm4ze5uk35B0V7nlAAD6KfTbAd39fyS9o+RaAAAF8MlJAAiG4AaAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAimUHCb2UlmdqeZPWlme83svWUXBgDobWPBcV+Q9G13v9rMjpH0thJrAgDk6BvcZvZ2Se+T9FFJcvfXJb1eblkAgCzm7vkDzM6TdIuk70t6j6QlSde7+yurxi1IWpCkarW6udlsllLwKJYPHM7cNz87o3a7rUqlMvCxkzQ/O5O7f5Se+p17kvL6ioy+YhlnX41GY8nda0XGFgnumqSHJV3s7rvM7AuSXnL3P8k6plar+eLi4iA1r4m5bTsy961s36JWq6V6vT7wsZO0sn1L7v5Reup37knK6ysy+oplnH2ZWeHgLvLi5H5J+919V/r+TkkXDFscAGA0fYPb3f9L0o/M7Jy06VJ1lk0AABNQ9F0l10n6enpHybOSPlZeSQCAPIWC2913Syq09gIAKBefnASAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAiG4AaAYAhuAAim0B8LNrMVSS9L+omkI+7OHw4GgAkpFNxJw91fKK0SAEAhLJUAQDBFg9sl/auZLZnZQpkFAQDymbv3H2T28+7+nJm9U9JOSde5+0OrxixIWpCkarW6udlsllFvruUDh4c+dn52Ru12W5VKZeznLtP87Ezu/lF66nfuScrrKzL6imWcfTUajaWirx8WCu43HGB2k6S2u38ua0ytVvPFxcWBzjsOc9t2DH3syvYtarVaqtfrYz93mVa2b8ndP0pP/c49SXl9RUZfsYyzLzMrHNx9l0rM7AQzO/HoZUmXSdozWokAgGEVeVdJVdLdZnZ0/D+6+7dLrQoAkKlvcLv7s5Leswa1AAAK4O2AABAMwQ0AwRDcABAMwQ0AwRDcABAMwQ0AwRDcABAMwQ0AwRDcABAMwQ0AwRDcABAMwQ0AwRDcABAMwQ0AwRDcABAMwQ0AwRDcABAMwQ0AwRDcABAMwQ0AwRDcABBM4eA2sw1m9j0zu7fMggAA+QZ5xH29pL1lFQIAKKZQcJvZGZK2SPq7cssBAPRj7t5/kNmdkv5c0omSPuXuH+wxZkHSgiRVq9XNzWZzzKX2t3zg8NDHzs/OqN1uq1KpjP3ckzJqT/OzM5n7Rjl2HPL6ioy+YhlnX41GY8nda0XGbuw3wMw+KOmQuy+ZWT1rnLvfIukWSarVal6vZw4tzUe37Rj62JUP1dVqtZRV9yjnnpRRe1r5UO/jRj12HPL6ioy+YplUX0WWSi6W9JtmtiKpKekSM/taqVUBADL1DW53v9Hdz3D3OUlbJT3g7r9bemUAgJ54HzcABNN3jbubu7cktUqpBABQCI+4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgiG4ASAYghsAgukb3GZ2nJk9YmaPmdkTZvaZtSgMANBbkb/y/pqkS9y9bWabJH3HzO5z94dLrg0A0EPf4HZ3l9RO325KX15mUQCAbIXWuM1sg5ntlnRI0k5331VuWQCALNZ5QF1wsNlJku6WdJ2771m1b0HSgiRVq9XNzWZznHUWsnzg8EjHV4+XDr46pmLWiVF6mp+dydw36m2dd+4i2u22KpXKwMeNUvcoNfe73qPnHrav9Y6++ms0GkvuXisydqDgliQz+zNJr7j757LG1Go1X1xcHOi84zC3bcdIx98wf0Q3LxdZ9o9jlJ5Wtm/J3DfqbZ137iJarZbq9frAx41S9yg197veo+cetq/1jr76M7PCwV3kXSWnpUfaMrPjJb1f0pOjlQgAGFaRh2KnS7rdzDaoE/TfdPd7yy0LAJClyLtKHpd0/hrUAgAogE9OAkAwBDcABENwA0AwBDcABENwA0AwBDcABENwA0AwBDcABENwA0AwBDcABENwA0AwBDcABENwA0AwBDcABENwA0AwBDcABENwA0AwBDcABENwA0AwBDcABENwA0AwfYPbzM40swfNbK+ZPWFm169FYQCA3jYWGHNE0g3u/qiZnShpycx2uvv3S64NANBD30fc7v68uz+aLr8saa+k2bILAwD0NtAat5nNSTpf0q4yigEA9GfuXmygWUXSv0v6rLvf1WP/gqQFSapWq5ubzeZQBS0fOJy5b352Zuhji6geLx18daRTrDuj9JR3e496W48qq6+y7yN5xnF7DdtXnlF+psZ17na7rUqlMtJ1rUfj7KvRaCy5e63I2ELBbWabJN0r6X53/3y/8bVazRcXF4tc/5vMbduRuW9l+5ahjy3ihvkjunm5yLJ/HKP0lHd7j3pbjyqrr7LvI3nGcXsN21eeUX6mxnXuVquler0+0nWtR+Psy8wKB3eRd5WYpK9I2lsktAEA5Sqyxn2xpA9LusTMdqevK0uuCwCQoe9zaHf/jiRbg1oAAAXwyUkACIbgBoBgCG4ACIbgBoBgCG4ACIbgBoBgCG4ACIbgBoBgCG4ACIbgBoBgCG4ACIbgBoBgCG4ACIbgBoBgCG4ACIbgBoBgCG4ACIbgBoBgCG4ACIbgBoBgCG4ACKZvcJvZrWZ2yMz2rEVBAIB8RR5x3ybpipLrAAAU1De43f0hSS+uQS0AgALM3fsPMpuTdK+7vztnzIKkBUmqVqubm83mUAUtHzicuW9+dmboY4uoHi8dfHWkU6w709iTlN1X2feRPHnXXfR6p2m+um+PdrutSqXyhv2jzEWZ8zzIuVfPV79j8zQajSV3rxUZO7bg7lar1XxxcbHI0DeZ27Yjc9/K9i1DH1vEDfNHdPPyxpHOsd5MY09Sdl9l30fy5F130eudpvnqvj1arZbq9fob9o8yF2XO8yDnXj1f/Y7NY2aFg5t3lQBAMAQ3AART5O2Ad0j6rqRzzGy/mX28/LIAAFn6Lqa5+zVrUQgAoBiWSgAgGIIbAIIhuAEgGIIbAIIhuAEgGIIbAIIhuAEgGIIbAIIhuAEgGIIbAIIhuAEgGIIbAIIhuAEgGIIbAIIhuAEgGIIbAIIhuAEgGIIbAIIhuAEgGIIbAIIpFNxmdoWZPWVm+8xsW9lFAQCy9Q1uM9sg6UuSPiDpXEnXmNm5ZRcGAOityCPuCyXtc/dn3f11SU1JV5VbFgAgS5HgnpX0o67v96dtAIAJMHfPH2D2O5Iud/ffT99/WNKF7n7dqnELkhbSt+dIemr85ZbuVEkvTLqIMZvGniT6ioa++vsFdz+tyMCNBcbsl3Rm1/dnSHpu9SB3v0XSLYXKW6fMbNHda5OuY5ymsSeJvqKhr/EqslTyH5LeZWZnmdkxkrZKuqfcsgAAWfo+4nb3I2b2CUn3S9og6VZ3f6L0ygAAPRVZKpG7f0vSt0quZT0IvdSTYRp7kugrGvoao74vTgIA1hc+8g4AwUxdcJvZrWZ2yMz2dG07xcx2mtnT6d+T03Yzsy+mj/I/bmYXdB1zbRr/tJld27V9s5ktp2O+aGY2wb5uMrMDZrY7fV3Zte/GVONTZnZ51/aev74gvfi8K/X7jfRC9Fr0daaZPWhme83sCTO7Pm0PO2c5PU3DfB1nZo+Y2WOpt8/k1WNmx6bv96X9c8P2PIGebjOzH3bN13lp++Tvg+4+VV+S3ifpAkl7urb9paRt6fI2SX+RLl8p6T5JJukiSbvS9lMkPZv+PTldPjnte0TSe9Mx90n6wAT7uknSp3qMPVfSY5KOlXSWpGfUeWF5Q7p8tqRj0phz0zHflLQ1Xf6ypD9Yo75Ol3RBunyipB+k+sPOWU5P0zBfJqmSLm+StCvNQ896JP2hpC+ny1slfWPYnifQ022Sru4xfuL3wal7xO3uD0l6cdXmqyTdni7fLum3urZ/1TselnSSmZ0u6XJJO939RXf/b0k7JV2R9r3d3b/rndn4ate5SpXRV5arJDXd/TV3/6Gkfer86oKev74g/e9/iaQ70/Hdt1Gp3P15d380XX5Z0l51Ppkbds5yesoSab7c3dvp203py3Pq6Z7HOyVdmuofqOcJ9ZRl4vfBqQvuDFV3f17q/FBJemfanvVx/rzt+3tsn6RPpKdrtx5dTtDgfb1D0o/d/ciq7WsqPY0+X51HPFMxZ6t6kqZgvsxsg5ntlnRInXB6Jqeen/aQ9h9Wp/5Bey7V6p7c/eh8fTbN11+Z2bFp28Tvg2+V4M7Sa53Jh9g+KX8j6RclnSfpeUk3p+3h+jKziqR/lvRJd38pb2iPbeuytx49TcV8uftP3P08dT5FfaGkX86pJ0Rvq3sys3dLulHSL0n6NXWWP/44DZ94T2+V4D6Ynq4o/Xsobc/6OH/e9jN6bJ8Idz+Y7nD/J+lv1fkhkgbv6wV1nu5tXLV9TZjZJnUC7uvuflfaHHrOevU0LfN1lLv/WFJLnXXerHp+2kPaP6POkt+gPa+Jrp6uSEte7u6vSfp7DT9fY78PvlWC+x5JR1/hvVbSv3Rt/0h6lfgiSYfT0/L7JV1mZienp7OXSbo/7XvZzC5K63Qf6TrXmjsabMlvSzr6jpN7JG1Nr+ifJeld6rw40vPXF6R1twclXZ2O776Nyu7BJH1F0l53/3zXrrBzltXTlMzXaWZ2Urp8vKT3q7OGn1VP9zxeLemBVP9APU+gpye7HjiYOmvS3fM12fvgKK9srscvSXeo8zT0f9X5n+7j6qyp/Zukp9O/p/jPXk3+kjprdMuSal3n+T11XjDZJ+ljXdtraQKfkfTXSh9imlBf/5DqfjzdmU7vGv/pVONT6noFW51XxH+Q9n26a/vZ6vzg7JP0T5KOXaO+fl2dp42PS9qdvq6MPGc5PU3DfP2qpO+lHvZI+tO8eiQdl77fl/afPWzPE+jpgTRfeyR9TT9758nE74N8chIAgnmrLJUAwNQguAEgGIIbAIIhuAEgGIIbAIIhuAEgGIIbAIIhuAEgmP8Hh5sIIL1hkH8AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"## Graph of salary distribution\n",
"result.hist(bins=40)\n",
"plt.xlabels('Salary Distribution')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAFKCAYAAAD2aJMUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXm8llW1+L+LwRkFFVFBxJScMofQKCtTU9Fuaf00q1tyzaJb2q+udQu1q2VqNtq1n2KmpJZjaooFIiLOIwIyDwc4ymEezmE658AZ1u+Ptbb74bwHOIyHYX0/n/fzPu9+97OfPa+91157P6KqBEEQBEGRNq0dgSAIgmDbI4RDEARBUEIIhyAIgqCEEA5BEARBCSEcgiAIghJCOARBEAQlhHAIgiAISgjhEARBEJQQwiEIgiAooV1rR2Bj2X///bVHjx6tHY0gCILtirfffnuRqnZen7/tVjj06NGDkSNHtnY0giAItitE5N2W+Au1UhAEQVBCCIcgCIKghBAOQRAEQQkhHIIgCIISQjgEQRAEJYRwCIIgCEoI4RAEQRCUsF7hICK7icibIvKOiEwQkZ+7+z0iMlNExvjnBHcXEblVRMpEZKyInFQIq6+ITPNP34L7R0RknN9zq4jIlkhsEARB0DJasgluFXCGqq4QkfbAyyIyxP/7b1V9tIn/c4Ge/vkoMAD4qIjsC1wH9AIUeFtEBqlqpfvpB7wODAb6AEMIgiAIWoX1zhzUWOE/2/tH13HL+cB9ft/rQEcROQg4BximqktcIAwD+vh/e6vqa6qqwH3ABZuQph2WHv3/RY/+/2rtaARBsBPQojUHEWkrImOABVgH/4b/daOrjm4RkV3drSswq3B7hbuty72iGfcgCIKglWiRcFDVBlU9AegGnCIiHwKuAo4CTgb2BX7i3ptbL9CNcC9BRPqJyEgRGblw4cKWRD0IgiDYCDbIWklVq4DngT6qOtdVR6uAvwCnuLcK4JDCbd2AOetx79aMe3PPv1NVe6lqr86d13uoYBAEQbCRtMRaqbOIdPTr3YHPAJN9rQC3LLoAGO+3DAIucaul3sBSVZ0LDAXOFpFOItIJOBsY6v8tF5HeHtYlwJObN5lBEATBhtASa6WDgHtFpC0mTB5R1X+KyHMi0hlTC40B/tP9DwbOA8qAauBSAFVdIiK/AN5yf9er6hK//g5wD7A7ZqUUlkpBEAStyHqFg6qOBU5sxv2MtfhX4PK1/DcQGNiM+0jgQ+uLSxAEQbB1iB3SQRAEQQkhHIIgCIISQjgEQRAEJYRw2AaJndBBELQ2IRyCIAiCEkI4BEEQBCWEcAiCnYBQVQYbSgiHIAiCoIQQDkEQBEEJIRyCIAiCEkI4BEEQBCWEcAiCIAhKCOEQBEEQlBDCIQiCICghhEOwXRJ2+0GwZQnhEARBEJQQwiEIgiAoIYRDEARBUEIIhyAIgqCEEA7BTk0sbAdB86xXOIjIbiLypoi8IyITROTn7n6YiLwhItNE5GER2cXdd/XfZf5/j0JYV7n7FBE5p+Dex93KRKT/5k9mEARBsCG0ZOawCjhDVY8HTgD6iEhv4FfALaraE6gELnP/lwGVqnoEcIv7Q0SOAb4MHAv0AW4XkbYi0ha4DTgXOAb4ivsNgiAIWon1Cgc1VvjP9v5R4AzgUXe/F7jAr8/33/j/Z4qIuPtDqrpKVWcCZcAp/ilT1Rmquhp4yP0GQRAErUSL1hx8hD8GWAAMA6YDVapa714qgK5+3RWYBeD/LwX2K7o3uWdt7kEQBEEr0SLhoKoNqnoC0A0b6R/dnDf/lrX8t6HuJYhIPxEZKSIjFy5cuP6IB0EQBBvFBlkrqWoV8DzQG+goIu38r27AHL+uAA4B8P/3AZYU3Zvcszb35p5/p6r2UtVenTt33pCoB0EQBBtAS6yVOotIR7/eHfgMMAkYAVzo3voCT/r1IP+N//+cqqq7f9mtmQ4DegJvAm8BPd36aRds0XrQ5khcEATBliKZQe+optDt1u+Fg4B73aqoDfCIqv5TRCYCD4nIDcBo4G73fzfwVxEpw2YMXwZQ1Qki8ggwEagHLlfVBgARuQIYCrQFBqrqhM2WwiAItklSp1p+82dbOSZBc6xXOKjqWODEZtxnYOsPTd1rgYvWEtaNwI3NuA8GBrcgvkEQBMFWIHZIB0EQBCW0RK0UBEHQYoo6+FAZbb/EzCEIgiAoIYRDEARBUEIIhyAIgqCEEA5BEARBCSEcgiAIghJCOARBEAQlhHDYydmRt/8HQbDxhHAIgiAISgjhEARBEJQQO6SDIABiZ3NL2JlUsDFzCIIgCEoI4RAEQRCUEMIhCIIgKCGEQxAEQVBCCIcCYfMfBEFghHAIgiAISgjhEARBEJQQwiEIgiAoIYRDEARBUMJ6hYOIHCIiI0RkkohMEJHvu/vPRGS2iIzxz3mFe64SkTIRmSIi5xTc+7hbmYj0L7gfJiJviMg0EXlYRHbZ3AkNgmDjSIYaYayxc9GSmUM98ENVPRroDVwuIsf4f7eo6gn+GQzg/30ZOBboA9wuIm1FpC1wG3AucAzwlUI4v/KwegKVwGWbKX1BEATBRrDes5VUdS4w16+Xi8gkoOs6bjkfeEhVVwEzRaQMOMX/K1PVGQAi8hBwvod3BvBV93Mv8DNgwIYnJwg2njhbKAgyG7TmICI9gBOBN9zpChEZKyIDRaSTu3UFZhVuq3C3tbnvB1Span0T9+ae309ERorIyIULF25I1IMg2EEJldeWocXCQUT2Ah4DfqCqy7CR/eHACdjM4nfJazO360a4lzqq3qmqvVS1V+fOnVsa9SAIgmADadGR3SLSHhMM96vq4wCqOr/w/5+Bf/rPCuCQwu3dgDl+3Zz7IqCjiLTz2UPRfxAEQdAKtMRaSYC7gUmq+vuC+0EFb18Axvv1IODLIrKriBwG9ATeBN4Cerpl0i7YovUgVVVgBHCh398XeHLTkhUEQbB9sq2oyVoyczgV+DowTkTGuNvVmLXRCZgKqBz4NoCqThCRR4CJmKXT5araACAiVwBDgbbAQFWd4OH9BHhIRG4ARmPCKAiCHYzU6a1rwb8lfoItT0uslV6m+XWBweu450bgxmbcBzd3n1swndLUPQiCIGgdYod0EARBUEIIhyAIgqCEEA5BEARBCSEcgiAIghJCOATBNsC2Yr4YBIkQDkEQBEEJIRyCIAiCEkI4BEEQBCW06GylYPskdppuHuIo72BnJGYOQRAEQQkhHIIgCIISQjgEwQ5KmMcGm0IIh2CHIjrEINg8xIJ0sEHE4mwQ7BzEzCEIgiAoIWYOW5gYaQdBsD0SM4cg2A6JtZVgSxPCIQiCICghhEMQBEFQQgiHIAiCoIT1CgcROURERojIJBGZICLfd/d9RWSYiEzz707uLiJyq4iUichYETmpEFZf9z9NRPoW3D8iIuP8nltFRLZEYoMgCIKW0ZKZQz3wQ1U9GugNXC4ixwD9geGq2hMY7r8BzgV6+qcfMABMmADXAR8FTgGuSwLF/fQr3Ndn05MWBEEQbCzrFQ6qOldVR/n1cmAS0BU4H7jXvd0LXODX5wP3qfE60FFEDgLOAYap6hJVrQSGAX38v71V9TVVVeC+QlhBEAQ7La1plbZBaw4i0gM4EXgD6KKqc8EECHCAe+sKzCrcVuFu63KvaMY9CIIgaCVavAlORPYCHgN+oKrL1rEs0NwfuhHuzcWhH6Z+onv37uuLcrCZCHv6INj5aNHMQUTaY4LhflV93J3nu0oI/17g7hXAIYXbuwFz1uPerRn3ElT1TlXtpaq9Onfu3JKoB0EQBBvBemcObjl0NzBJVX9f+GsQ0Be42b+fLLhfISIPYYvPS1V1rogMBW4qLEKfDVylqktEZLmI9MbUVZcAf9wMaQs2gZgtBMHOTUvUSqcCXwfGicgYd7saEwqPiMhlwHvARf7fYOA8oAyoBi4FcCHwC+At93e9qi7x6+8A9wC7A0P8EwRBELQS6xUOqvoyza8LAJzZjH8FLl9LWAOBgc24jwQ+tL64BEEQBFuHnX6HdBxgFgRBUMpOLxyCIAiCUkI4BEEQBCWEcAiCYLsj1MFbnhAOwTZNdAJB0DqEcAiCIAhKCOEQbDfELCLYmdna9T+EQxAEQVBCCIcgCIJWYFufCYdwCIIgCEpo8ZHdQSlFqV9+82dbMSZBa9OadSE9O+pgsDmJmUMQBEFQQgiHIAiCrcS2vs5QJIRDEARBUEIIhyAIgqCEEA5BEGwXbE8qmR2BsFbaTITlUhAEOxIxc9jGidFSsDOzI9T/7TUNMXMIgmCT2R47v2DdhHAIgp2Y6NSDtbFetZKIDBSRBSIyvuD2MxGZLSJj/HNe4b+rRKRMRKaIyDkF9z7uViYi/Qvuh4nIGyIyTUQeFpFdNmcCgyAIgg2nJWsO9wB9mnG/RVVP8M9gABE5BvgycKzfc7uItBWRtsBtwLnAMcBX3C/ArzysnkAlcNmmJCgIgiDYdNarVlLVF0WkRwvDOx94SFVXATNFpAw4xf8rU9UZACLyEHC+iEwCzgC+6n7uBX4GDGhpAoJtg7DWCoIdi02xVrpCRMa62qmTu3UFZhX8VLjb2tz3A6pUtb6JexAEQdCKbKxwGAAcDpwAzAV+5+7SjF/dCPdmEZF+IjJSREYuXLhww2IcvM/2alq3vZDyN/I42J7ZKGslVZ2frkXkz8A//WcFcEjBazdgjl83574I6Cgi7Xz2UPTf3HPvBO4E6NWr11qFSGsTnUKwMxD1fMdmo2YOInJQ4ecXgGTJNAj4sojsKiKHAT2BN4G3gJ5umbQLtmg9SFUVGAFc6Pf3BZ7cmDgFwY5CzDqCbYH1zhxE5EHg08D+IlIBXAd8WkROwFRA5cC3AVR1gog8AkwE6oHLVbXBw7kCGAq0BQaq6gR/xE+Ah0TkBmA0cPdmS10QBEGwUbTEWukrzTivtQNX1RuBG5txHwwMbsZ9BtmiKQiCHYiwYtt+iR3SOwCb6zWRocoIgiARB+/tYIS+OgiCzUEIhyDYydgZBxDbepq3xfiFcAiCIAhKiDWHYLMTi5BBsP0TM4eg1dgWp9JBEBgxcwi2GjGjCILthxAOLWBrdGqbyxx1ZyTyLgg2P6FWCoJWItRqwbZMzByCYAuyvarSQmgFMXMIgiAISoiZQxDsQMT6y4axvc7stgYhHIKdgi1x/lR0JsGOTKiVgmArEovQwfZCzByCIAjWwc4qzHdK4dBaetlQSQRBsL2wUwqHIAiCLcWOMggM4dBK7CgVKAiCHZNYkA62OTbXom0s/m4/bImyivLfNGLmEGw00fCCYMclZg5BEARBCesVDiIyUEQWiMj4gtu+IjJMRKb5dyd3FxG5VUTKRGSsiJxUuKev+58mIn0L7h8RkXF+z60iIps7kUHrkab2McsIgu2Llswc7gH6NHHrDwxX1Z7AcP8NcC7Q0z/9gAFgwgS4DvgocApwXRIo7qdf4b6mzwqCIAi2MusVDqr6IrCkifP5wL1+fS9wQcH9PjVeBzqKyEHAOcAwVV2iqpXAMKCP/7e3qr6mqgrcVwgrCIIgaCU2dkG6i6rOBVDVuSJygLt3BWYV/FW427rcK5pxbxYR6YfNMujevftGRn3TCPVIkIi6EOzIbG5rpebWC3Qj3JtFVe8E7gTo1avXWv0F2x9bc9d6nFy68ewIAnFHSMPWYGOFw3wROchnDQcBC9y9Ajik4K8bMMfdP93E/Xl379aM/1YnKlAQbH+E4N98bKwp6yAgWRz1BZ4suF/iVku9gaWufhoKnC0inXwh+mxgqP+3XER6u5XSJYWwgiAIglZivTMHEXkQG/XvLyIVmNXRzcAjInIZ8B5wkXsfDJwHlAHVwKUAqrpERH4BvOX+rlfVtMj9HcwiandgiH+CIAi2G3ZETcN6hYOqfmUtf53ZjF8FLl9LOAOBgc24jwQ+tL54BGuyodPnmG4HQbAhxA7pIAiCoIQQDkEQBEEJcfBeEDTDjqhDDtZNHKO/JjFzCIJtmDiXKmgtQjgEQRAEJYRwCIIgCEoI4RAEQRCUEMIhCIIgKCGEQxAEQVBCmLIGQRA0ISzEYuYQBEEQNEMIhyDYTog9D8HWJIRDEARBUEIIhyAIgqCEEA5BEARBCSEcgiAIghJCOARBEAQlhHAIgiAISgjhEARBEJQQwiEIgiAoYZOEg4iUi8g4ERkjIiPdbV8RGSYi0/y7k7uLiNwqImUiMlZETiqE09f9TxORvpuWpCAIgmBT2Rwzh9NV9QRV7eW/+wPDVbUnMNx/A5wL9PRPP2AAmDABrgM+CpwCXJcEShAEQdA6bAm10vnAvX59L3BBwf0+NV4HOorIQcA5wDBVXaKqlcAwoM8WiFcQBEHQQjZVOCjwjIi8LSL93K2Lqs4F8O8D3L0rMKtwb4W7rc09CIIgaCU29cjuU1V1jogcAAwTkcnr8CvNuOk63EsDMAHUD6B79+4bGtcgCIKghWzSzEFV5/j3AuAf2JrBfFcX4d8L3HsFcEjh9m7AnHW4N/e8O1W1l6r26ty586ZEPQiCIFgHGy0cRGRPEemQroGzgfHAICBZHPUFnvTrQcAlbrXUG1jqaqehwNki0skXos92tyAIgqCV2BS1UhfgHyKSwnlAVZ8WkbeAR0TkMuA94CL3Pxg4DygDqoFLAVR1iYj8AnjL/V2vqks2IV5BEATBJrLRwkFVZwDHN+O+GDizGXcFLl9LWAOBgRsblyAIgmDzEjukgyAIghJCOARBEAQlhHAIgiAISgjhEARBEJQQwiEIgiAoIYRDEARBUEIIhyAIgqCEEA5BEARBCSEcgiAIghJCOARBEAQlhHAIgiAISgjhEARBEJQQwiEIgiAoIYRDEARBUEIIhyAIgqCEEA5BEARBCSEcgiAIghJCOARBEAQlhHAIgiAISgjhEARBEJSwzQgHEekjIlNEpExE+rd2fIIgCHZmtgnhICJtgduAc4FjgK+IyDGtG6sgCIKdl21COACnAGWqOkNVVwMPAee3cpyCIAh2WrYV4dAVmFX4XeFuQRAEQSsgqtracUBELgLOUdVv+u+vA6eo6vea+OsH9POfRwJTNuGx+wOLtuD11njGtna9rcQj0hxp3hnSvLEcqqqd1+tLVVv9A3wMGFr4fRVw1RZ+5sgteb01nrGtXW8r8Yg0R5p3hjRv6c+2olZ6C+gpIoeJyC7Al4FBrRynIAiCnZZ2rR0BAFWtF5ErgKFAW2Cgqk5o5WgFQRDstGwTwgFAVQcDg7fiI+/cwtdb4xnb2vW2Eo9I85a93lbisbOneYuyTSxIB0EQBNsW28qaQxAEQbANEcIhCIIgKCGEQxAEQVBCCIdNQEROEZGT/foYEblSRM5bm3sz99+0GeJw1ibce5SI/EREbhWR//Xro/2//TdnPNfy/PvW4n5SC+7dryX3ikgnEemwcTHceIr518x/64xTk7xvNp2bGLf2/v0pETnSrz8rIj8Skc8289+3ROQP7meD6/la4rCuunfARqZrLxE5SUQ6bsA9BxSujxaRA/26s4h8UUSO9d9dPOwTRaRLC8P+vIjsth4/H27yu42ItPHr/TyMfdd1z5Zip1uQFpFzgD8A56pqubsdCDwITASu9e8FwCTg+8ALqvpBEdkbGAu8BOwOdMMsvoYBX8csCb6BCd0FQAegk7tfCrwLjPSo9AQ+5c89A1gB/A04FTgdaHT/k4A7VPX5QhquVdXrReSjwKOqeog3rJeAJcAzHnZ3YCrwGvAZ4BBgD2Ae8CZwGlAHVAGdgeXAPsCuwGrMrHgecCDwF3/87djRJm8AXYAveLgfARqAlR7mHOBJVX3a4zwI+LDnH8ARwOHAQkCB+7D9Lv+OHcB4PnAdcCLQHigHZgJjgG963BqB/sAo4Gjg10BH4FvA/2K7SQGW+fcwYC+PZ3/PpwP8+dVAjce7AzAO+BMwR1XHehraA3/1eL/o6f4MVhd2AVYBDwN9PA/rga+o6nARORj4F3AcIFh5twNGe37O9rL6gpfhXu6vzuN7jcdtOXCv/z8EeEZVH/X4vamqp4hIO+Bxj9NxWJm/jtWlL3ncqrGdtg2YCfl/Ab/C6kRHrH5O8Tw5yfNwtT/3OeCjHq56mbQHnvdye1xVb/T8mgBMBsZ7nj3o6ejq9z2L1YGDvdweAS7wvHpKVZ8Wkf1VdZGnsY+X6ylY3ZgKnOx1obP/PhKrh3sBLwOvYm2qHPgNMAL4J3bY5zCsbf4dq/vicfggVlfP9PrQHljs5dYJO+7nDQ8XrG7OAZ705zwIHOXxGOJ5PUxVB4vIBz3Pu2N9RSMw1+N1tv/+K/ADrE7tBvxEVX/veTBKVdc7gNpkttZuu9b6YAWcPgu8sOqxRrcY+CLWQBd5gTRiFX554VqxRqR+b7n/fgxrSMuAMf688f6sPfz+aqyxV2MV61JgONYRrgIqPbyH/fd7HqcRWOM8C2s847CNgUM8rCEex5XAvlgnXgsM8O8FwGXAUo/fB4DpmCD4jcd/ONbBvYd1Hh8jd/CXYB1og+fVIqyhlwNPeN6NAX6KNYpVwD8wgfYTf/Yw4A6P3zse7qexjnuVx189rHLP21n+vDqP+/metqFAbw9jLtZwFOuwRngaq/13AzDDy+Ntd/+xP3Mm8BV3W4gJ+PEe7g88X2s9r2rc/UQPa4zH8xUvyyXA97wM7wM+S65XP/Bw6rD6sMKfv8rDrAYudj+zMGFeD0z2Z5W73ye8zFb7da3nd0fgRx7Hwz2Px/r3Y/68sz2PGzzuy4HhHv4sYBomDOo9nNROGv3Z4zyP98Lq82rP50EepypMUNdhnetJWJ2d6td1fv9Kj0MjuU2twoSBAvO9XNJ/yd8qrD7NK5TBHKwu9PX/3wAO9esRBT/LMCGanruS3Ja18Jw6T3udp/EU/6+rh7XEy/cT2IBqtqe/3O+5zfO1yuNa6/mZnvuep3OZ+78Dq3f3YG1vsZfF7X7PQkxINwCf8Dh83uP4Rf89eqv0na3deW8F4TAIG5EfhY1gDid3QHOxDm+xf/7iDaAOGxUP8spR4RVwot97KNahXIN1FA3+WdbkOgmTDl5BVnnlqcIa7gz/fxeP62pgnF+n+9N36rRTxZ5LHlXO8Iq4uhBOElbveGN5BWv4K929DjsJF2zkPdqv53qaH8BGd9Uefk+skU7yfFyEdR7fxzqZ5X5/A7kTXk3uCFZ7HJeTO8kZwFc9P87zPB3t99YVynByIT0rgal+/SVPxytY55fuXd1kcFCdGpU/63F/fkrz1EK+tAFq/bqnl08a/dZhR8q393SOK+TfuELeT/Hrp7y8n/F8m4DVnwlN7l3oaagDRrl7NTC2kP5qz+uJhetifSt2eOl6RiHvz8bqeD3wNFanT/a013uZHwUc5vfMwkbPDcDuHo8af357v+cdd1dMGI3w8l3u16vdXxesroz18pmMHwMB/I/7P87LfwpWzxZ7vrzoZZbq3Wrg+EIepXysJdeRai9rwerLEo/Dj/xZFR5WO4/P6ynf/f7GwnUtuZ6MI8+SGsjt5ylMgKQ+ptzzb4qn+ftezuOA/+v3ziqU/8pC/SwHfu95+mqTevy23/9+XLfkZ4dfc1DVz2MjqTuBPVV1Onk0dw5WMdoC81T1Ukw1sRibFj6LNcD9gOPxab6qvotVuls83AZM/bA3VsBjC9dzVXU5NlWdgKlMdsNGHG2wjmu1R3exxwUPv9rDeRqrTHsCZR7mQdhIskxVP4A1gKWuA26LVWA8btUezyOBtu6nGjhURIZgQqCniEzGRp5/x0bCz3pYbVR1GrBEVY/GOuVGbKR1LjbNTs+bAZSr6mFYQyzDOpkkXD6DdT71WOMcgjXQs7BRfFJVzBeRi1z/ehtwuIic6enpICKfAo4FHvVyORY4yO9vEJFbXJXTzZ+Hp2UB1sCVrHZKcUdVG8l08nT+1PNPgEGqWod1Bvu5/rkK6CgiP/cyFRHp6nGb4ek/BKtHjf491Z9R5W7pVOLjRORLnj/7eTr3w9QV52Kqkxl+DdZpnoirB1W1DTaaXoyp7iZgI/Nn/VnjsFHqMkwgpZntPl4Wj2MCYH/gfr/3MRG5xp/xoqd/pccbf8Z7qno6NmhYAPw/bPa1CGtL+3reKHAj8CGve4d4WodhnWt/j9O7mKrpt37fgZiasS0wXER+iLWjI0RknPs5WER2xwTVvmq96gtY/XoQEyyzsFlXmoHsirWvriJyupfhHBG51NM2E2sbF2MzqF2xmb1iHTuq+jnP2zs97OWeV9XAx72sjvI0pAHHDz38fQr5CLBKVa/0cvojvP++mzbYrPt8rK5veVp7ZL+1PsCeWKN6BRs5fBLo7v+9yJqjhV5eGNdjo5e5mDQvAxa6n10L/h/AGgdYhT6uEO6v/Hr/gvsQTMf7N3/GXu7+f7CObCqmUnnL3TsDv/bry7HjRcAq1j1YI5xEVrPMxypuGdZJTMUq70ys0k4C/g3rJGfhajGsYzjY4zYe0/vOBf7mz3sOOMGvv48J2D+T1UMT/VnL/BkLgMsK+fS9wr0rMOE5GbjU3e/1eC4AemCqtoUe72psFJdGtUOAbwPt/d47yLOU0z0eDZ4f17mfK4F/9+ufYY2yyuO90L9H+HMmYZ3sIGxG+Res3hzm9x+JjfImkzv4Smy0eE8h/47G6t6LHr86rDP9kodzHDazGICpu6qwsq/HOsgh/oxemDB9ydPVzvO/wcP5KfCYX/fw+C8kqxgXYGsC5xbK4zRMVdcR+B1wNaaLH+T+e2Od4eHYqHs00KGZev5N8iznAWzQkvKsL9aWHvI8qsVULf/m4V/qaeqNtc/XsUHE6EI8R2Cd/AisLvwGExS3e14eiq2BvONhJ8G13OOTdPs/97ydA3zOy7uGXA+fxk593o/crkaRNQGrPa53YOrENzyM5z3cyVj9G4nVlU97/Nthax+Nnh/XYLOAKqyN3uH+zgKu9OvjgZ6F8vyaX7fH6/CW/uxUC9I+qjgOOElV72jyX1dVnd3MPQdh+s7BInI88LGm9xb8fhd4QFWrNjJ+e2IdSaP6AlwL7+uArSm0AypUdb677w9UqmrDOu49EhsRrQZmquqKJv/vldxEpBtQr6rz/PexWOc3HmtQ07EG+KwQAAAgAElEQVRZiHg85jUJqzuwTFWr3MrqHGyx/6mCH8E6oGUFt/0w44l15klz924IbpjQFZt9TGsa/3Xctyc2K12wHn/rrD9N/L6f183k+6mq+krT67WEcwq2/tJs3onISao6am3xFJGO66vPTdNfrDNN/B2NdYD3eR3ojM3s6rFO/2BM8B+OzT5LwmgSXltskFbdxH0foJ2qLm7mnmJ73h04XFXHryX87tjssWm7OqCQ1gM9vntgo/122Ezxg830Messq4K//XDVoKpWikgnrPyXr+/ezck2c7bSlkLslNc6NWrcdO3jYiaPaTp3u7pFit/zXewI8elAH1X9i/+l2CgEEbmy8Ji2mLXOZ4A/isgczELi79iosLOHVYzXhzVbwYxT1eOwDvZ0TJ0wHut4P4ydUvsENhpeBNytqrWF4HbDRkarsVETInIUblUkIh9T1WHu3kfNAuQYj98hfn8Z0M0beoXH/6fALBERz78Kn3r/OzZiehobCTVis5ikAjsU+KGINGALeNMw1Uc/YHcR+SmmPngNuNk7sLQ28hlsWn83NlNRd7/a4787cKuHtxQbba4AblXVmbhlkoj8El/IT2l3999jo7iJqjpZRKaqWaLtg42ku2K6+KEubDoV4jDUf1+IWTm9RV5s/pbXqdWYCudorLO4S/MIrAdwkIicilnBzAHuxkajHbBRc39VrfS8vk1EZmMj0Wli7z2ZBZwvIn/zPFcRWYCNoO/HBgkTVXUIgKq+KXba8ac8DuXARdgI9yngSRG5DPgFpvKY5O7J1HaRiCzDZhDTgQtVNanE8GesxOudM0lEKlT1YyKyF2a9dYh/aoGrReQCrL7s7/nUEZsd/AbriFe4eu1ArwcdsdnFEcANwHdV9WpsRpnK9lPAfFWdIiJvicizwMuq+q9C3E4AdvP2sT9wiqsfV2JttRyzOLwB6/R3xWY3p4vI61i9f1NETsQGLPOwmQ4iMtDzrh54XkQO8fR0xWaAtxfi+gS2fvU4pjp7BJu9PYxZvzUCq72+A8z19jQQuFFNtbdl2RrTk9b8YJ1OJ79+CKucb2B61iqscddhoxkwffpqTM2yGKs0t/pngd9zq/t5GDN9nYd1VJXYVHaBP7eebN00C7OY+aJ/Zvj3NLKqaraHe52HtRrr4Go83Plk1VFSqzyLdeyrPV0z/XsaJlDKC+EnK5O00F6DdWxpKv41z5/5hTCXAWcV7p+JHZA4i2wdNMPvq/F8qMHUK2lE+Lbn8R88T5POfjLwXayjutvTOBxTsUzAGsg0D+cFj8Ozfv9T/pxaD6cR+KX7+ZbH7Tp/Xn93rynkX6P/bvDvRn/uTz0vlvpntrvdUYj7HLIJ5yse3l2YRUuyUnnF/f3Bn30f2TKpEVNlDMBUR6uxzqGerJ55zP0ltWayfKvxvHvZ7/sy1oGm547xMk7qzLs93m96nBf6fbWetzXkdYdbMbXSanI9X4WtH9xPNox4DOvIrvTPnMJnCXlhPD3nLqxONWADnNWYZeAdZKuklzxPVnp5DiNblFV7WbxWCLceE86PY5ZR92NtbjxWR9TzrR74q+fFVH/WX7wcV2Ntd6Vfr8bqfQOm77+SrApMi/7JAGC5x+lWz4/57q8Wq/OveF5chQmkZJyxnDUNCFKYq/x7LjbYfA1rQ209r+diWoUbgDu3St/Z2p33VhAO4wvXtcCBfj2O3BAnkRtiDdmsr94L73+xEXKqlLO8IST9eNKFz/CKlqw7xmKj8MfJndJzZF1n+l7tlayebPVTQ1bXNAATCnGdi3UqqcO4wxvGLKwDr3E/g8jrAbPdvR4bASYrlrke72QBNIps3XOcV/hRZIuoRzGBuNA/ld4wbiAvuE7z+1f4/ddiM5733H9DwX9qHM1aenk4Mz2Pv+hpSFYpEzE1FVjDr8SMBNZmPZZMJLtgwiflfS3ZBHmc++mIzRJqC/VnJabuSHFaWqhXz/h1tYf9LfLC5B3+rJPdT1qnuMX/H12oL8vcvWn5T8EsiRoKZTWFbPVTjXVsTZ/bgHX412KDhdX+/xxMeM50t79h5st9sbqxMF0X0j+GbOmjHsdhWH16B+tQF3j4s7CByXQvt7JCWU3BLXE8zbWYNVUlVj+Hexn0IJuEV3n83vU4VJGtARd7nF/EZh8K1BSetcrjsILcjpZ6GEf5JwnuQ/15aeA31P9birWV2/y+eo/vw1jbusLz7EkP50qszk/x65e8TCZjwitZQZaRLShrsbe04fk5rth3Fa4nb42+c4e3VgKWiciH/LoBmyaCLeyk9O+HFc5wrABnYQtWx2ON7uuYOkmwkcYnsD0Bx2PqjnqsYNMz0q7INpgFyRexhvU7TBXwAawR/QqrUCvIZnpJ1VULoKY3TUIJrEHOU9VDsQ7xNqyTPBYbQf4O66xX+XUapU/DOoCFWMcw0p/RiK05vOnh7+rpRFXH+f2XYBYX73q+7Yl1YvM97Nmq+lOP66p0P6b6Efc/BFMj7IJ1Hod6mAr8U80qawLWmD7k8Uo6/LFYg7zG/af83Y1s3ZUEYnr94TQP8x2y9dhID/NBTMWRbOjnYCPwz/mnaG9fJG1Kw8NK8agFjhaRj7ifalX9s+f5FKx8dsUGCWDl+R5mXdXO8wesvszxNLT3sNJid7Wa2qwa2NutpBYDe/h1G0wd82esw5lOHnyc4c/4Kja4aMCshw7170VYZ9WHbKG2C7YILuI7qj0eVap6FFZf7sOE6S6evtReqjyflmNt5Rqs3ic19gTM+uzjWJ1dparPYO1uBm6lg80MGrGOucHjt8w/Szyc4zC1Tw2myjvH70nrDSuxcr7G41nvOv1pHsad2BqBki0R+3ke7IltSiz3320wdegSbODwNKb2PcDzdrk/vx2mlmt0fx08X9Ps+niP237kmXJbL7dBIvJtbHBSI7Yr/SUvo7SutnX67dYe2W/pD1Z472AV+WWytU4NNoq/A6tsN7r/WaxpufQAZtm0BN/J2MwzTiGrY0ZiDXMg1un/wP18EhMwHTystCehHBtBzCRvokm23fUex0XAmYXRW7IvfxyzE/841qhGuPsI4F2/vtvvaed50IAtAj5BVi09jnVWz2AVPFlMdMZUSCn/7vO0PYsJgQVYI5yBCdD+mPCZignNl7EO+3yyeeV8zCrpGb9vHtbI/p1sKTQfE5YV2Mg0reEku331uNeRLXTewxfVPU2N7l5UA6zGVCRtMP1+2hHd19M1wOP9LlmtpB6npBZ4DesI/kHeLJdmOmlmlsqq2j/j3P0/3P2r/nu+5496OuvJ1lkpnU9iAniJ59Fgz5vJhfhV+bNnYvVO/bkpzb28DF71tM3A6s0kj3tfrBP7CKYOmUCeOTxIVsuOA27y6yOxtTQwIXYa1pnOwepvBTb4GYpZhqU9OgMwc/HUadcD/+nh3O/+nySfUjAdGxzMwQZC9V4G5djaz5F+76887m9hI/mx5MFEmi0lNc5Mz4OJHuc/enxmN2nX52Mq0b+6/+m4NVXBz0e8DJN12CKydd+P8XZY6FvaeFwryVaQyaR4jMd9IVlVvRwTxId6GPsB/2dr9J07hbWSWzWcjY0QOmCd3hKsAZZji8+V7vd4zLT0lSZhtMdGGe1V9WvreUY7rHHMxhbIpjXxewDwWc0L3U3DOhqzaW6DCZu31O3vReRCbPT2rNgZMldjC1vvADer6nK//zC1Fyg1Dbto6fJZ4FRVvVrs/JYPYPsmqprc01zaXsTs1U/HTPmqyWqtHh6nCmCRx3VPbNGzF2ayez4mPB/FhOtXsQ5+ANbRHYuVz15Yo53rVlkfxDYCzcQ6gufUDA3aYGWzyuPcVVVni8geQBe1UXcxTR2xUW2jmuVKJ2zUl6ytKt1rR/9dgY3yLvK0TcU6jrHYiLWzl9XR6kediEgPbERd699zvXz29/J9ApshdMNG1rNVda7f2w4bwS7BOpGDsaNV3gNuU9WVHv4nsQ7pPPJAY2jTMvQwD8YWSA9R1U/5KHQvLVjBuNt3MWulrzW5/6uq+kDTcJv4OR6blXVTs3Y6z/NrvLsv9/S2xYRDmaqOLKT5IqwDfxRbGD4LK+fB2Mwh6f97NxO/j5GF9H7YWsR72BEzjd6Gv6Sq93v5H62qr3kdOQ3rgO8ohHcAVkd/jpnK3oENCtawcJJ8rMqJ/v1nVZ3vi8kHqM1GEJEumi2eWmwF2VrsFMKhKT4N74pboXhB7oV1PDMwK4bjgUmqOrFw397Jj6oucUuoD2F66CXu58PYYuC5Xml+gjXguVhFWwz8ElNjfBEbAV5PPqtJsQazwuN0lMfpZP9/uKqWF9LweWBAqnSFuBbNRntgnfJkrKM6HuvIv4h10unwsWVYI74f0+tPFpGvYZ33eKzSqzRj/ujPLJ6Bs0YeY53jrzErnSqsw90b62C/g21aGuX3tteCNYZ33Ptge0kaPd+T9c3iQhmejp3LswLrqOdgo65PYx1FB+Bm4GxVHdQk7kfQTJkX/i+pM03+/xSmF35TRD6BWdZMwnTNPT2/F2oaaltcewErVHVAMQ89b9438dRsSrw/Nnu9Aht4DMQWPD/uz7pJ12H6KCIfIB93cjNmoPExrE6MxQYYd2Gqmhe8jh+LzSz3xwYEM7EOexL5zK4U12n4OWAicpOaNVHTfNw3tZWCW7GuPuDPm4OtraT6tI/n4wxsJnAUuR02F+alafAlIu1Utd6v9yreW/B/JKbmK8fagWB183RMSM/D1gVblN9uufY1bGabBmNHYe3tw5hAn4NtqpxUuO9KrL0943mu2MzmNmwAMhm4Xtdj5rtZ2BrTk9b8YKao6foT5AXklVhln+zX8zC1xgps9HUXNq0rI2+USrONemyTzDis86nDNjx9Hl8w9ufdh00R047qFdiIdCnW2abFwAaPUzrHqM7jtsKfnSxy/oB1Miv9OS/6/ZVYwy4jnz30Hln9sAJTL1V4+u/CRnBPYjrf08gLemlh/hWypdG1mNrjOayTrcA2RSUTxrRRazqmKpno8RtNXjRPeVzmfr6NdY7JWmWZP2e+P/8FzAok6ZvTwvUQT0/a6DTOn53WWaZ6/o3D1FXLPC8eKDyrBusE0ua7Ff6cwX7fSs+jM7HRYDq0boTnyVKscZ9YKOd68iL/BExtkzbuJYumpFa6g3zGknp4v8DWO5Z5HiXLl1qP1yLyRqyHsBnWm+72KlmNmVQnyZLreeAmj1M6U+w9v+9N8izsXWwxe7zfV+nhLvByuAmrVyuxGdRostpjJSZc/oEJ6+exevtP8ki/nry+Mxubie6Ljcrf9XK7jmxFVufX9V6+aaf/Si/r4R6fuR7/cuCjnr9LPC/OBP7Dw5iKrXHN8HuXY4cigvULRbXgCo9TKoMG8vlWj2GDvdvcX7ISSyrC+8hnW1WRrcMWeLn2d//zPB41ZGu6wX7fax6PMsz8dbjf/yls5vfXrdJ3tnbnvRWEQ/HMlMVYIzoU6+CecPcasgVIDdl6ZKn7a0PuZA/EOkjFOo2kJ0/nJqVduQd7WB/3sMZgDUjIC5LdvFIvxEZFy7BGnKxSxmNmcEu8UeyHdV4rMIuWpzFhkY4cqMKm3uk8mSNY8wygWV6JryQvTF+JNdZK9zOBbDE1zdP5KtbgGzy9qfHOxhbsav2+L5LVaV/EGu0S8oF+yYqpkTXP4knhpfOj+mMLuRXknbOLMPVEI3a6JaxprbMKG/Xj+ZYs0dSfNRAr/0rygXg15I76x2Tz03rM9jx16g95PB7DRtxpdlKFzYjSMSF7eBpe92fXevrf82fNxurFSmwjJuQBwl/IwqC/p/kJz7u0W/oCf1alP3cVJpC/4vfNw+pXyvfe5MHIhzw/52B1rYG8fjAKm8GAdfB1WJ3/Ar4Du5CeGf681VjdFS+b1WRrojlkQ4snsJF2g//3CtnKaE4hnPKCe1svw0mYJU8j1nZSu0iHE6Y1lbQmUUs+EK/B76/H2kaqpzeypvntlV52NVh7OpdsrTfTn3Ey2Rgh1bdktnsoWbC8QDbnTnEowzr1FVj7nowJkc96XNI5Y/393gMLdThZrr2/Y9zjMXZr9J07g7VSkb1U9RtqOsB0RANY4SaLjHqytc0uWEfZiDWANqo6T039ocDX1c6TmYiZyO1GtueegDXgZCkFtuMxdVarVbUCq0h7qq1LzMD0mTOxBtFGVcd4mIuxkX0HbBS0N6YHXaaqN2NrAYvUjsieTp4ZFPWGB2ONvgNW8fbGhF1bTN3cBZu6ilveVGMdSh2mElrl6Z2HWXZ0VdV/eDoPwka+HTArns95+O1V9TWsARwgdsz4tz2PB2EN9il/znhsGn8A1hEsxBavAfZQU/fUYbprPE/2KJRbskRbjqnpIJ+d9RbWSc/GGud4rOOd6Hn3PVU9FevIFLPwOcjzYBQ2gvs3bI0ibUhswGZT7cmmsjSJ0zxV7Y51Ent5WLuS1WLpNM+Pe7zKPf3dgM943jVih7M9QV6sftnjXaOqD3p+LvH6tRTYTVVfJ+9heRgTFB39o5jaA2xRNtX5dCbWz7DOstE3rOF5Mcuf14ip0RQTWpCtiao8jDaqeoGqvop14ks8j8ux9jTP4/EAJgQasFl3mmk0qG0eTYf/zSQPvsDqWTlW1zpjneub5BNwX0/xwGZyu2Kz5LTBL7WFPdz/N7F1jl18TULdTxlW59p4GYIt4M/zvuQirK/4Fbnzr/D4H6GqaYF+FraPSoD/VdVrsLa6ADNW2Y1s0ZZMzvf2dO0C1oGwZpvecrT2yH5Lf7xQrsQOulqKqX/SUcnpiOwGrOFcjzWAOqxirfb7v0E+RrcvplJ6kWwpMQrfT4GNAIe7n3exzuhizApjlF9Xkq1sRuEzDKwS1mIWNWn0fyo2Qn4T0+8mNdPFZAuqiz0tAzzMe/wZyQqiEat01e5+LTZqf458Hkyjx3Wlf4/ARkLTsAYxwP1cj3XKNVgn/98e7gJMJ/+Mx+tiTO+/DDOhTeqSEWTVWLnfewQmGEeSR07PYnshPuLlUOfuD2ON/2KyTf4LZPXTW15mizCV2BKP7+v+///4sz6NCfB0flZRfTbbn3Wk35fqzGxM3XQxVkdmklVntf7sQeSNYmnvyyWYoF6ALVguwzqtgZ7+r2LCoMrv+ThWL8d5/tYW8vd2z4+l/l1D3hh4NzYAmEveg/Gqh/UZz5NGbER9LVnlp5g12R/93ocw4ZDaRiN5xtK9UMeqsfoxE+vIUllVkI+oTmdfzSC3kcvJJ5o+jo38n8Tay3yPW4WH/XdP42JskTqpl5LlYTp/7G3yzHQ0dowNXh7LsDa1HFO/nkq2YBrn3xXuvw15g+wSf2Zqi9Ue1lTPk5Tf3/PyuMXvm+GfolVTHy/bIV4Od2LCN50OPdOf89NC/qbZ7w1k67vDsV3fW7zv3OEXpEXkuiZOU7CO4Rhsej0ca1xPYVL9Qkx9MwWrZM9gncFx2CzgaaxjH1p4xlPAw6r6t2aen15c8/6ZQ1hj+A9scXsSNoo9CGsch2GCZ1e/52CsU7pZVWf6tv27MWFxhv83BavU96vqC764dh9WWcuwl9Ysxzr5pKN/UlUnexzbYwL0EKzxDFTVhqK1hVsD/QnrZA7A1DH7Yw3mdb8/WaAMwnT1h3ueLcF01gdg73l4F/iRqk4Skasw/fOxWCe5UFXf8UXK33o5zcWm1T92G/X/8mcf4WU1h3yAYDdPaz02e0jHP1d4nv4b0EtVP+CLnF/FRoyvup8ngX5qJ2M2LcPUwY7BGv8b7uUU7DDBC7FGfjVWX44vhPsEVs/O9jjUYMKkg6re5c/pThakM7y8VmEzhH0xYfUupgKbgplBnocZN+Dux2Cdfbmqfk5EPokJoQM8zGpVPVXsXKPLPA5HsubxF4PUFloPxITTTaq62O3v79e8QC6e/x2BK1T1ByLSF9P1H4HV0V+r6hwRuQObOVwtIodj5pi/bmKh9CQmrL9E3m9ThQ24PozVqTJstvdJTJD8SFWni8jngQ+r6g0i8vtUfm5EcpOXwVAvkwu9TvwRGxiAjfIrfNE/qYH+C5tZJwu9Oqx9HODxPQir45OxQf1FInIvpobqjFkMprw6AlNJ/hbrT9IBoG+pn33m7Q0167s1rOykcPabiB1nwxZmhxcOWxKv5P+ONZBkrfGgqi5t4u8+Vb2kYK1QtOJZw1phI+JwVOrkN/A+YU2zwTM8btMwU8lkOns6tsYyUVWH+H0bfbhdkzikc402W5ge7r74oWUt8Pt5bWK5tC0hhUPe1uGnWcugDXzOWcDp3nm/fx6Z//ffmM6+DdYhF9941rQ+P4/VlY06JE5EztLCWVgbi6zl8L/13FO0tvsEbqWntkGv6G+d+d2cibC7H4UJlrGYQO2FDQ4nYvuEkkHB3tgAoQsmZHdhM/UXG8IOf/AegNirQS/AKnE3bBTWSN45/AhmnteIWU+MIx9+NRubXj+J7QP4taouEpGXsU6zBtPZPo1N/ytEpJy8M3gqcKrbYB+GTWfnYOoJAR4UkYdU9WYfySb96wHYyHEFNlqdjFWiu1S1zNMlwMsi8h2sg38KGx22waxQJmO7R7+BjWY6YbOhttiI6D2//pPH6S/YyO1Y4D+9U7gImwlc6WZ2g7Dz7Y8GfqaqrzQxkRyIWal0wUZ5o7Bp/NFeHOm1iPXAriKyAtPZPyIiYzBV0Sxs1PYi+fiIctY8uvs49/dhbHaVrJmSWqC9j75GeXx297L6JHbM+I89HoeLvXvhQvwgQPw1sp43lV6Ou5HVOGB1qNzDfwGbDaQD1n6jqnVePm9gFiaPev4u8/vSiaRDsLWrc12o/QYbre+OdbT7iR2SeAM26m2D1cnu5GPPv+6zm3S+VjtMPbHEZwh/wtZXlmNqvdHk834S34T37e//DZvVVorIVI/rM5i+vsrT+wcvm99hdfxiTM24K3YqwVKyOqyTl90KrE7cjM1qP4aNnnfDZi7/F/iHiNR5ef6SvO/lH9io/RlsdtQNa3Onq+oNHvd7MNPh4djheFd5eq/D6vrTmCp4oOfX/Vib+h42g3pXRHb19HTB+oV7RGQmprY6Hj8OxE1iu2NtbgrWxpKJ8L+83HbD1o3KRWQAZhJbS37z3uuYANrdP29i9TrtYK8hH+kzAFsbeb+/YEuzNXRXrfnBKvFgbOr9L6zzug5rYOMwG/sqTNd8K9kC4nxMPz0Us/oYgG0+S+E2kk3nxpEtfGZjhZ+sT+7E1CI1wLXu59PAK37dBatw+2KVeilmh/0HrMFcTjZjHI5VlmFYg5+ATXWHkF/JWEPeFZr0xavIr1JMetNVWMNJFja/xxpQNVbJD8bWAJKVRDuybn2KP28BpuaYhVle9Pf8+wfWsOuwzqC7+63EOqWnyFY0Kzw9F5Df0ft1T/syz/tyTMfcm2wZdag/azrWUczzvEmql1cxi6mFntYfkt/3MNDDT7uQk6nwNZiKbxSmlrsRGyn/HmvYC/2ZN3r+TiUvfo7FRoJ/9Gfvh60PVGIC9V9eNv/jcZ2AqeLe9ud/lHyo3GzyWlFanK0j69lXYOWfThJNaazG6soq8i7dUV5ev/b7asg68wX+/zzy+sN8Sut5OissHYL3Lm6F5e7Pkd9dUEEWqHVkC7FlWD25hmyV9wzZjDi9zrUWGzQt9vgtIR/s+ENP3yTsNayzvDyuJO/af8HDacDa0DLyK2DHeJj7ktWrZ/sz0prW0VidmIcJmvQ61EvIa3bJQqrMn1GDrYX1x+pPBfl4luc83GRins4TW4m1v2QOXuNpecn9zyL3KWeRz+7aBV9b2eJ9Z2t33ltBOEwtXI8tXKdjFUaQbbVHeGNIh3alg9vSeS5KXkxU/IU/XlHSPW9hDWyYV45xXrlryFvgx5IP91Nyp5AsEdJGn3TERhJYfcmj7oXkd9XOIHckXcivJJyJm+V5OGmLfgfyZp9kh312QdBVUtDVu/tu5HOYiq+cbPoax3rsLHtY81C5t7FO6jlM+CS9/ThMeN+CjWjTK01Xk1+ZOapwXUs2O64mH8I3jWyCOIZs7jgW61Be8Xiv9uek14qW+2cw2fxyViHPaop1qVDOYzzNHcj7WFJephM2mx4k2EjeS5NMeZN7On68HhtBJhPfmZ6PQn7J/SJshjmeXL+qsQ65p/+fBF4dcJTHudLDPA0TwJVYp5oWgmdg6o5K8inFDax5dMt4f0Zl4RnzCmU+nfya1Wr/v2l9U2ymeZqX2zS/bvTP2g5MXIh15P/CFrJr/RkTyfsMrsMEQB1Wp8aTF4tTmGlgkAwG6snnIKXDI9tg9SUdOTMH6/T3Jr9KdyHZnHyoPyPNLlMbT9dpkNaWvD/kPE972vNU7J+mpHz03+nAwEPx19CGcNh04TAWOKXQQR3u17PInck7mJ4UsqVLG2wkPdGvL/YK/gymn09TvkFeud7wijUG6zC7YZ1HLTYS/Iv7H0FWLT3vlfgHXugvesXp4nGa7dflZDv0aeTOcTS2gxavpPOwzrfK701HTH8BO7KihmwBMQTrWPb1dKYRzulYg/sr1nE0YIupE1nzhM5RntbPe0NZgtm/N5Lfjzsea7S7Y+qHcta0BpnjedQOW2SvwkaUfcnHlbfxMpmLbbxb4e4fwDq1RdjMZIrH+6OeR2V+XYmpB/p62O9igqDB0z0DqxcfxBZSU8d9EdYJVmNqvjYehxWF9Kc6M8PTuq+n7SXy61DThsjlhetJZKE23sNN8avALHQW+PUMYHEh35/G6sZHsE5ugedjcRDwJ6wunOzxT88d2cTf+EI4M8gnzp6A1Z1yj3faFNeAtac0EJiFzWaW+XNGYHXsPS/z+WTLr2Rxdya+sc3dJ5Pr5BLgtUL+ji/4meX5m+r4teQNjtf686cV8ncWVqfSLOVuT8tU91/l8ftvT1Pah7EQq8PJam4vrJ7/F3nWVu7PaM+a9T+ZjqfTXdO+lSSka9zPg/78IX7fUvLmwRH+fxocDCG3jX4tDNUAACAASURBVKexev3+xt4QDpsmHE4iv85vpGd42sn6E/fzW+AWv+7hFX6hF0gaET6MrRl82q/ne0UbhTWcGeQDvYoVawHWUS/yAp/pn19gapIryC9M7+TxTBvu0maxZZheGuw4jsGFDn6vQlq/h3ViaYq9DDfrw4TTAuAR93sgdhQHwEOFMPb0/87FLHDKsMb1ksf/oILQTRuCzvS8mOTPecLvSyegvkd+B8Jyz49+2Mjp15heFmxEmEz2+rrfdCx4jefFeMzM8g3yiaUNWIP8JdaAFvlnCNYhfc7D7EPuQNJsa4bHf4rH/xN+33LyaLWOvJlqqpdRlZfjJHx3sYd7A3kw8jJZ6F6IHT8Ctrt2csH9u83E7xl/1rxiOVMwZcRmQzXup1g2XTy/0xHpSjZ//aH76Yy9DxpsTeYWXBXlbm297BoxdU4/TOj2ItfvNlgd/jamSpuO1bXf+rOTifRyTCU6vZDHj+HHeAMXN5N3b5LfhfE3cr39G945YiqqpA56h3zE+z+BC/x6HLlODSlc/zdWb+7A6vtj5Fe7Tizkwx7w/qthR2MDub/5M05rpv6njaNlWB38JiYoPuB59GUvn6sw89pbMG3DCqxePO/+rsUGTb2xQdd/+nXbrdV37jTWSpJfAZmOVC45P6eZe/aD9b+espn7OmBCZTdsBrEXNtqoxBagitYdb+paCkHWcRjeep6/JybIumszh++5n/ffRNeC8E5S1VEi8kH1t4C5iWC9NnlFY+Ge/Sm8otR/fwlrRK/49clYg7pT/SwlaeZ1rRtbDptCij/54D00W7IU61LJ61BbEHZLXyva7Gsskymjh9MFG1TMV9tUmQ5K3FVVq93I4VhsDWm82nlZXch1cDWmKlFsFtr0zKjjsbWFSl+EPRkbcE0gv0+jeH7XJFWd4Peu9XWd/v/7dUSaOR9pQ2hiBvr+tf9XNANt9nXATcL6ICbU1jhry93nYTPKOdjaTE0z93fFBGPJK3ql+deyCqZ6a8c6rOxE5Luqevu6c2LzsdMIh4SInIYtFv0Ts+Q5AZs2lmELP9Oxwj8DazAvYh37+/sCCmGVmLuJ7SZ9DBs1343pLVeQX5yT1EV7YqO3HpiFVA02YzjN3e7G9gj0cf+fwDqqa7DRxwXYKOUqrHFP9Lh8CRsRtcemrDdiHcP5Hv4daofXNWAVfSA2Qvw8NsJJdvILsVHMa9gC8q2YBdVsrGE8jXUS+2CLgMdgI5sGj/v/w0aU/d3fBzyPO5EP4hvtz12BjYzexUZyn8JG6mnhO51tNc7jcw822nvR097Dy3NvbBT3PLaR6wKsrI/CFsn/hS3wX4B1qm09PU9iHX0Pv/dl8uFyEzAVybEehzMKca7AZpAPYwOBPp7H+3pejMUPKwQQkd7Y7G40NltLnXkftZ3t7yO25+EcVf2zdx53YYOMEzGLspFeXndhAvcITO0209N8IHZsystip4t+0oP+sZfjYqye70Y+eryDu/8Bm9Ee7c+c7d9p9jfF83kvrI79GquHdVidrvS8+rvn7ccwPXkSGqdiqr4GbFZylce5DptRP4cZFqSz0Cbpmq/6THl0IGZxtBprQ30w9ekkbE3jRKz9zXK390+r9f0Vl5GtGHtig5a/Yx371djs5fNYff4fzOruLk9/T2yGNAer18djKrThIvJD8k7zf2B1uYen9SSsjX7LyyQdN9ILm5kmy7syv++DWFt8AJuF3ASgqr9vmh+bna01RWmtD/Z+6HR9N1ndshrrdNIi6jjMImGRF9IAsiXLcFyPWQjrEazRPE220KjEZgxVWOVQD/uvWAVIutX+WCOejHU+q8g60bRrO6m/koVMJdZxNWIdqGAdUw2myklWM0Pxk0rJhwWO9bQ9hG3bB+ug5mLCI6ln0uF04zxei/2TTHrTybLJwqKWvBN2eSEvy8jqsOlYI087TJ/Hz1kir2kswxpm0glfT34z1kv+/BewjiAds/6Kl1UNWbVXS35z1xKsg3jV8/BGspXPgZgKYZZfzyS/7vQdD/Na8mJ7eSGPaz3ec/z3Ak/zRPIrY+vIVjITMMH6AtnqKNWrl7DjsUvOyknx8+sHyGdtNWL145XC8xeSd9o/Sz6UMK131ZFf6Tob63xXk1VMNxfy9ddkQ40p5DWDtlh9q8XaxgJP61/Ig6jeWCe6GqsrL5LPM1sOXOZhTfW8+GchPX8gr2+kwyyVbDjwW7/3iUIejfK4jvRnVpPrfmrD6YyjqR6nvn7vg/5/b2x2X0fBKtHLq4xsxZXqyCf9/u94nt3l/kdhg6in/HmLyYOsEe4nlUGtl6VgbWac5++L7v+rZHXctVi9n4HV8euA67ZK39nanfdWEA7Fg/dWYBI6mW+OwkbY9eTD6WoL16O98G4sVJT+2CigEVtkvY6s2/0l2dLicLKlwrfIx3Lc4RVtd7IN/wx/XjXWIN+PU8FPOlRuFXkxs5q8aFdLFj7j/LntvTKuwBbOU8eVvuvdPZk4/h7rcJdi6wHpkMB3C/lxIPkAtJmFvFyCrce86+5zPU6nFfJ+CjZzKB4GOJ1ssreKbLI3lrz4W1bwU4t1+O08DWOaKcOJ5EPL/lVI50pP2yDcQs3913jc9vD7kkVS2utyWDN1YxwmSFL603EQK8kGA4v9v59jgug9rPHP9jy6nfzO5WSRVkt+p3UjBUuXQse6tFD+ySR6pudfb/JrSJPlzauFMptU8D+ykJbp7n8FWY/fydPzoULaZhbuGY91avWFNKeBRdoYupJ8hEXK+3qyMcgq8surJrmfP5Lr/7fIi8Tl5LrcNJzV5HWc2YW8GE1ug4sK4dQUwkkdele/vwE4zq9n4Ka9Huajfj2f/N7ttMb1R7I1VEfsXLBGbA/EaP/MJFtkNbXKaiCvm5RjdeJXWB0bhfcTW+uzsx2810ZVR6rpyVdharU6rGD3cT+15IPT0sF715CtLA4hnyz5gKr+HKsk5ap6FdbIFmMzigVYYf8ZW2xrwLbcH4zNNvphi3p3+fMUa5h1WAWr1/ya0FXuZz754K0G8mFz9eTDAxs8rckEsgoTZHt6nG7ycJaRXytarXbkQGfMMusszBwXCq/LVDt4cCZZuKSKXo2pvKZ6vtWQZxiQXw06BhNOPUTkz9gxGPXuZyU2XYd8wBlYJ5zSWYOpRTp43jV6OmvJmzqT4Nrb09Hg6ZzozxqIdUSrXP8OdmxHNfl0UNT0yY1Yx4qnOb2WNPlJQn8XscMK23hegA0ilmKWLm3JRgnzMTXjBzxdU7GFzjTaPxNbpKzCDpVLJ8CCdRYdROQb7n6ciFyC1d8HsQ5pF2AXza9t3cfLrAo4WEQu9vCPEpE/ePpGYxZWjcBMEbkdU2nMAR4WkcFY/eosIgOxerwUMyldCnQTe/fHQZhwqCQfF/M7rMwX+HW95wPulupXMixIZdvW20478q7stlin3zScZLQAVo/e87xIa2N/Js9+klXRadiA6HeehmdE5FGPz59E5FrP4z08v6uAczy/O2MddtqnUovVL8FMUKswtWpK/xGeDvVweqq9uvbv/vssbIAyX+xwynexBfRXsXa4P1ub1h7Zb+kP1lDHYqOQBuBgdx9CNkU8BOvQp2OjVCWP9B8lm5AlW/CZfn1sYbSURu0nY6aVH8YqzGJ374Hpe/tjHdMMrDKlRcG0ee3/t3fmYXYWVf7/VEJYAySQEAhrgGEJIvsqwyaOwICOoCyKCv5AHRUVHBRxA8RRB1EUTEJYBdn3PSIQ9j0LZF9IZ9/Jnl6STur3x/ecruqbe7tvd9/uzJB+n+d9uu7btZ46VXXq1LfOedriD6Ox4S2X8lzSWE66ZHQnUn1FxIyrkPpmCBooP7a0L5Akxy+T0CoHowl+LELJPGd1dAz9GrTdno0WgEEWfwKaZP5gv39P8ivt23lvXz069+iLJufFSJUwFE0mH9rrtHdVzRVWxiL7/3SL4wvou+jG8zJkEwqkTqpGFxBXkRAqe6LJxyVrVxnU2u8X0STpkpwjll5HW/6RBTS+w2hRQ/L3sJzEV9silccpJH8PU2l8sXASZhYbqRZPzHhynpXrBvB80n3GaL0ETV4DkTrtVnRWUE+6IzOGJFEfY/05CEnL1fb/FWiHNQjdf9gYqU2es7aNNjq/g/jtOXQ2cB/pPs8Ykun1SWjSn0fymVDIt2/b96eBDy18E8nDn/u6+BlaVJ/I8llu75osn2EZ3S+zNt1pZdVZ26qRjTLQeHyS5NbWoenvWR+9hXZ2t6EJ/PfoLMrVWAvQ+PglGgcfkQxt1iCeHIU0C58kwcrn0xiVtS8al0NILkKHIHWj36P6hJX5SkfOnR/7A+kQwq7Zz42RimSVISWOjTE+YuEdEFP0R9LGRugwax0DWUXKOB9t9R8t+H4Wkgh+GjOkTUjGxrZAE8wRCK6Wu4D8BNAj6kCxAd1iSIh9Y4zPW17uwvMANPHOI51ZFBr2ahIlE2RfZxEZCscOQ3dGlkKPRBLgVDQZ7UO6TXoG6W5INVIxPY+ktblogM8x2m+PFoat0QHzb9BubV8kxS5GE9HR1h/vxxj/aSiwPZCOeHqM8YMg08onWbvfi0KrbIEWvD5oYlseSyBUzAxIf/vp9Fpr/+uF4KGjLN5B6KB0NWnxc7eciy3NGWhH+nABaqg/UnMtQJ68JmZ1aHDdWqJ++6LD1p5oMr41CuFzKlr4hgQZT7zI2rIAoV6uNtDE/BjjxJx3DF10DJroN0Xe7eoLym7Ea/atJ5KIfVfa0H6jV1+EnCpEPa2Tl33fHpm0eNl+H4V4ys2VuIXah7xfStDp88BWMca7snp+FvHGjmgX0dBPBWkboeFCafe7WyO19F5o5xcwsAoSJkB8Px+plabHGN+xPHdB5zE/ihWyIdbuz/qQ5tfXi1AkPbPfeyJ0Q3+kxvgasnF/BpoIA1pQDkZuLEETYBfEJC8hyecTaNAuRVLILCRlHESSipcBX7A8DkES3CQkbRwHbJvV63NF6r6P18F+T2wqvn3frsi3XmjS/DJakE6y9h2CBvpBmCOaLH5e1lYWtx/QK/ve3WiyTU7XjO5DLa9eSDqdiNRpo5AvhUb9lOV5MFokQSqng9DA7F4YvyCPg/O0WT2uQSiVgHYYTyF7RjuhuxVfQ5cGjyah+fxW+PHWxj6Fbbbfbp46r1uvwroVqWvOh41ol9O3GA8X8kLB922L9Nk29n4aHYivQPw7FO1E3sU83BXQ0d+BxiffQzvJEQhtNBbtrmdiN6pL8ScSCn6HdnAOeqhCKL9zsBvdBWm8DT1LhS3eiy2hfRb3MCSx3412fFcijcNj2P0Ri3ceOmf4pvNHPi9YuNGckcU5AaH4Hrf2DkbCxv+QLvotMjr+AI2P0WjnsluWz7PtOU82lNMRhazPF6l47iPZhZlCQlpMsQ6YTUIYOEqo1uK54bs5SIpwUxdTrUNHkzx1/Z1kJmCFfffLaxNJJiCmkQ6hf4+ksNlWntveucIG2hjSFtsPKWtp7Fq0Fh2s+e3oD0mmNRwV8yo6MFuJVCC5amYFjc131NNYreJb+WoS4sLPG+qtzJloe1xttLrFvnkdVhu9P7R0dyOd+1Uk9dm9Rqcqo7kfaLptKUewjLE4j6KBVGX/d1tXx1jaoVb+EDQZPmPxBlrf1aAB+YLVaaHRYqy1cZXRrNbq4ecsq4yG3ub5iHcWIKGgFgkNx5Dcys5F/DPD+toP3sdaPW6x/7kb1/FIVfIq4hG/Db2WxAuRZKqjjnRo/wziQ7+IVWd/o5W1hnTBr97eeZb209gtZfsdkd57qLXBD8x9nLxLshV0F1LfTEEC1o1ooZuLVKpLSEbnriO5qF2M1GfVJBe185AJbozGq9BOtMZo/XzWH8tpfAbm9fzQwotIO72HrI2PkTxBfp5ken6B9cMDVoajGu8zOryIhIil2TvR6jQHqcaGWTx3KuXWAB5Fi8skq2uVtWeJpVtqdPirfZuAVJJXoZ20C3FzOheHyiwOb6ID1q4kZE9XY2zX468kTdZjkG65n3XgHCRhz7Q02yO8cSQ5+3EjbOdauMq+L7UOPsPSV1m4Dh2AYsy8Euk2Jxuz+BnEZGNSh0D2sfAiGxBzswHj8MNg+bmeeZLl91XSArktupnr9l38VnYVaQI9xdLXZO1ZjiTGrpZmNMmNo+vRq0l2YJZZu4+y+rlOuJak/nKDZH2NXqdkfTKB5CbT+2cqUpOAJrxZSJJbbPn8heQ051KS4bcq0kJ1pNGzFwnF4zeT+1ibeyEcegTOsP/5vYd+lr+7XJ2FJu5LrU/WoEW+xuro5ihWWFo3xLiH0csXxxmW/lLrtyWk85x6dAh6A+r/HUimM/z29iVGxxXAYVmfVSHeXGLl7o8mzhfsfwsQX/rrZzFu/M/zX0Oa1FZg0izir9FIreUCzHjrz9tJpiAmo52fH7Bvi3YejgD7tsU7w2g70sL52V01iY8WWz77IF7xc8F60g3phUYvL7ca3a5fZfQ7Ek36zrO9rJ1Xku5ZzCUBG36U1WMp4uFa+3uExfF5IQdsOB0dlRRJSDcvewRpjookkyRDSRZ1h5LZ+2rPd0NAK/WKMd4fpXdfbTck1yDm6GFxupKQDquQvrYKk6yj3CLWooPDuVHOWdYCu4YQvuR5WDzQpcfL0JZ3J5Lnub5oOxqBrUMIx6KBuQxJYH3QJLIUMeWvkQTqO5h7ka5+I8tvTozxJJLbzhOiOCtHzKxEE8HPrT1+yDnCvn/G6rWptftUpHZ5KITgKCp/NkL3Rpx+ISY3jo72cqnU4y+NcnX5EdAvhHC1tbc7CaVVhZAf3UkuQP0m+5toULmPjEU0dtUYkKTmntGGGd3XINSL7wLvIMFGHQFzlfWz76KIpiuP0j+/bWF33ViHeKAKqQ66WRldrc1bkqTo86yM6VGuXmegvn7K6jEH7WiAhnHY1/La0t5VJKm4Dqkxr0d96Hc+HJmzAOnChyMI7lEZHVcYby4k2SLaDB3Kbo4mxO8hZJQLPo+jy30Oy7yJZNfKd5cnG5+vQRP9M+iOynK0S+pKcpBElMvMEWgy9oP+zdC47IMk5q5Wj40Ruu10o+PG1p5obQIt1MuQemajjB7uyhV0rjfdyp2IxlJ3kkHDAUgi72V1XGjpr4wxvmZ9tTVp93FhVo+qKBew042OfpnyOIuzBk32WyH16QQLT7a+9d3fVkHOtNYCm4YQDrfwzCi3vBdZWSfY746xFLA+pfqOeNF2cABa1c9EEsatpJXcfT7PRnaLpqKB/BM0qfzU8vkuWkBcr+iWGJ9FEs5SxJir0PZ0EJp8fWv5NNqO3m9p16LJx28f/8XyfwO7jJW14T8QM7ufBsfrr0C3oqegxcAx26sxy41oAI1Bi5SrEX5NMjB4NhrMs7HdjKXbmaQWWoWw2uOsTVciaXk40oe6yejbSWqX8dbGR0nGzeYitNbSjN7LsnpHJA06sswlxDetn462Plll8VeRLoo56sjTurG5XBo71/43j2R9dgZJohuA1A5LkYTm9rWmoJ2A32YdYjQej27NzgKGWhkfWJ5+scpVPe+j3dZJpItpg0gOXl4yGs5Gk/cK4PKMh33XVmX1P5I0Wc9GN6+fs/xfQbz0O8Qr09BZypvAdZbnxSR11GikEnXDh3eQ0DT5xc/LSJdIBxhdXjA6DiXxeX+kM/d+Wmrt9XOTnlbv6aQJ0lE+91mc86w/v4FUQGuRMOGSup9XTUQTtl8IdNXVK2g3vgZ4I+cFo5Gr5vx+yRto0dgYM7aY9ecqa99Ua8vuaFxPR2rraWjR74rmhEkWZyjJMORAy/c5knXad9FBeTXJbLfvzj6wNky2dn0+nw86Yu7cENBKGyNJ2D1WuZS3FBF+NjpMXohULEeQHK1sim5mrjB0x1dJh5ffizH+0Mo4BemFZ6Gt/X+ihWAxcGksQDFZmm8hUwx7kdwQvo1gbwci3PvzscB2UZD3ufPRQN/f6nsgMgXiz2eB3WOM54QQfoEOxi4xtMWf0eBylM7DiMmfRqqb5VlZPdAE/iE6DN4bMX0Po+GmRsdB1tYfGe0mkEwWfBINrr+iRWUf7EA0yk2oS1mgndMoNFgc9fPHIGdC1yFJfTWS4u60+Mui0DqHoP670+o4Ico95QCj4yPWph3QwNwcTZCOnDoNqTXcxElv0q3nn6LJCmvLR2gyXYHUc2uAv0SZTvgWOk+oCnI2s3uM8aIQwiXoTOScIFevf0Qqw0PQojcBTVgfIb7sAQyJcvu6MeKHE5Eqagd0FtEbCTz7xRifCfLa923EU5sbvTZCE/5UpGP/h9FhTzSB34Qm62kxxukUPCGEQ2OM72W/90SC0m4kvp0SY7y2SNofIOBDP6T+vDvG+LQhlL4f5XXuMBIUeyXygz7V7CMdBvy7tWdHa48LAdtYeJHV4TUkRG2HePpIZIYlAL+OMQ4KjV2VHoQcd32moM49rK9/bOV0A86JMb4d5Djpb2iX5M6SZqBx+5NoKEBDL/4nGjOboQX9MaN1b+vffdFO/S0b01+wtjwZY3TXpevYKOvI52O/OHTkE0J4McZ4og3SM5H0XU/yNncaWkBuQxPO0WgC/e9Y2tjWtrGI4bJgrkfbUNfce1vumWscZuspSmWUpynbWF+R8h5BF6Yeiy1031jJxxbIk2ls/LDB5k4r8ivqxrNUv7XH01ZesDz+GwlIo2IRN52hiGvMEMIvY4xXF4lb9HuZ9bgATZCtUp0Uq2cL0h6MFmAft+6x8QB0YD/BoMFHUtre0zaY8bzmxotdQLwHCXNjo+DPX0bzQg2yuHA9jW2UjUXzxdLiuVbu+dgvDiGEPwIPR7mz/B7ati4MIeyPtoI7IXWNm1C4Cek6d0LSzHZoErkBqRN2QJJDTxJaxP0T7IUk6Y3QtnMckhomooPFoQgOOZKkQjoaSUFvo0OzrkiqmGd1qEe3aBcgadJvAm+J1FeHIuloHJIWd7OmO6rqNcu7Bkk971j9N7dv1ZZ+NNJ570baWi9Bi9wBSCo7nuTV62/ovKIf2kp/EjFvF8uvGknX/e37ZshezYlIsrsX7Va2QReF1iIp/VYkHVdZWSvs+1vW9nFGt5NIppDrrc4r0C7H/TfsTTqgn2f/O5yEYNnF0m5t9N0JqUpmoR3ZJiTMfTVSCdZZu93o4bNIdfbXGONkw9s/SPILsZh0E3o+GtyPoLsKq22x+ilJ6vXzEtetLzda90K7jG1IF85APLM92nFsYv27Eu1897RvV8QYPzLJ9zpL0xeZip9pu6sL0X2TU61P3e/Ga5bfV5GEvyPi7Z2NDn9Bu5WHrE9fRLuQXfKxBxBCeBKpYHKhaSJS2c1CO7m3kTS+CbKD9IKlvd1o9Jb1xSQ0FrdHO8jFSMo/hOQTfSXisR4kC8CXIdXOBWjid/MWT5G8102zdi+2ts2xcgaS7j59EoEwLrM7DDehsbgE8dMm1peL0PhYa2GsL09Eu4ha+7YW8fAya/8nEM/2RIv2GsTTn7Z+O4P2fjpCd7U+X9KtR3cMc5B9n4sYeyeS3ZfZaPBXIeaZhZh3EFoo6pDpCTfONRKt+kssb7eNM54EMYw0tqHi31YjXfsSkhvC1cBTVr9lVv7lJCjlWSQXk+6u8EmL41vsg9Gh7DSkfvKzkEEkxMx/IMa7CzH9arQ47GRlulnip60dQ5C0tBQNgodJUN9BFmcWGphTkcrr2yS/zjkkdg3pJu0CpBL4q7VhorX7VNI9kL+Q7onsb305CUH8HAp4rtXnKav3SvvfoZb/Y9bOlUaDrxutHiUhzGYb3Z+xvH6LFqV5aNK6Juu36Zbe4a0Obd7GaLTM2uOQ5s/Zd7dbNQVNcn0QX12J1G0v2v/3J/mKuMb6YwLJ9eRctFC7BVGHgo4w+jgqy2Gs91jbcgdLfthdaLvpIUv/CDro9f5aS4KL+m3+mIVzePNaNIkutDrNIPlSOc/q4c6M1iLemUzjm90rSbxTx7rw3YtINr0Gk+5KuNmWcYg3cyh2LQnivcb65iirp5tGOdjyXEiyO+bne/WWx0js/lJMZ2JTLP1ZJEOargIdbfVeigSMWWh37rDZryOBr9768njrZz+znIjZKLPyRnbI3Lm+J+8OWBwcYunuE8eQPDO5a8PhJANek0huMt3kruOuPU5Ag2oSGpTvWMfPQJLhARZ+0Ji2D8mDlptC2A1JOvnBaw0J1reSBHF0Zzn/tLqPNGZclbVzddbWkQVhx47Xk+5aDLO8DrPvU+37hKydXUgIoO8XtH81ydja6qyuI0iGAZeTPNsNJxke+8DeMSTDgB/Q2JWmm0gYmn2vItmZmmJ/12blusG8WhKUN69PLclAXg6hXEWCso6ksXvG3HOaW911J/B1pMWhiuRAaFVGl9yI4wi04/MJ1JFdfudmVZZ2BAlU4HHdWJuDKfzvlKwcN0I4iXVdhq4hmWYfi/jxAPv/7Iwv3kfqjHusTn3yMjKe9AXlfdKhv0+8PqEvIfG8Q1z9LonXY4KFnS7LSGgeN5PhENoRJGODo9D4ugfxkpt7WU3SirhF4z4kIa2Qni6wubkKt+56PMlczhyL546JJpOM+NXR2DVoThc37ngkGofjrC0OPBmNdgw9ra4foXH+PBrzUxDQ41DLZy90i7/d584NAcoaAWKMk5DU+y46NK4G3rYt4U6IYUEdNx9tnx39MBh1YJcQwjFRvbQl6rhT0BZ0Y6QWeApJHNsi1cTVaLs9Bi0IfZFUcAuSUiOwxM4Angf+JYRwjtWju8FdpyIJ8wK0Fe1n5ccQwnfsUA9kVK0PQl10tfB2iEkHW1n97PuPrT53owlkqxDCZKTSmWI080H0Z3Sgv6mVE0gSK2gh7GX51lpeF5LQYPeiwemDsA/aKZ2KBtl+CLK4CCGmTrA6VFl4MTA3xtgP840dY9ydtMiDpOouQbb01wLbWH02Q4bTPoMGbt8QwkDrn74hhOfQhDrH0m6HDPL92NIHAAsPAXkkEwAAIABJREFUt/eXaFKZam3/EZqML0QT/aoQghtVXGUwxY2RZOkqLj/09snyKKQKqg4h7Gf/+yiE8Flr38goGOTBaELZzepQR5I6ickIYa3x/MOIh7+Kmc+OMU5Du5zd0K5qFbDUDoFfR2YofojUgGvRhcwuwFrTqWPpXO+91ulk/XZTjHETNPH/KQruORpNsGehxWIPq8dcxMtnkSyx7ot2Bu+j8TqXZHByS2R48BDSwnodUhFuY/VcisbRYSR01b0kXxRTMYip0fRMo9G7IYTB1k/PIbtOb1u+PRF/nhdC+Bnit6dJZuarSeqxxUHG83Y02hJjfMvacJ7VuS8ap37XZCLJ9MwCJLR1s3L6A2+GEKYgGLbDadv3Wd+SfXu/mASd/T4fdbj7xF1jHXKI/f8G4EYL30KC352MJvV3SGoo33n0Roe630colGcRI7jZB4egvoqkgWeRXvJQpDf1OrmJZ9/GjkMLyDdJphlOs7p/aOm8HdPs9ZvO1Zb+fWBnS/tFxOBueG61xbkNSYzLkGT2b1m7rkRbYb9A59C6MSTDgwchFcF4kgppBWLkQVbWHCSVz0Zb7mMs7dUZjb+IDiO9Hx618HeBH1r4PJK7TvctvQRN0sPQ+cX1aGLzxcMvGk5DC/Y5SJVVY3UajNQ8Nda2sxH6zG+yLjI6/Z5kKuMeK3eu/T7e6ORpVljbHQ7sh9/zrZ5+2a+n5TuepCqso/HN51EUgTWihcJvZi8k+R1ZSeJnVxVOJ0FHl1v9d4lpt3Gl/X9GYRyj/9+NLtPQxDkd+HdLP5Ckuvouye3tiGzcnW10LEx7gNFsIAJF/IkEid0XjZ3bSSqdWiShD0VC2SOWz12W799p7Pb1LKPNZNKOczbaQW2e1e/3SEj5LnBtRrsHkaptLpL2T0BOlV5ElyS3tPBqpH51t7ITLc0vLK9tSJfdAuK/iUgt/E90nnMqOh/5Ijob+3d0VnkAUtn26ci5c0M4kO4e2wEdE0IISAImykBdb8QsE5Akd1SMcZDF/e8o+NwnkZ34u/P4MXnIKst9pMUt6laxXOibwSPPIXmvcpTEWCRd1lq87kgfPgUxdVF3nSHIdWUzZf4r2v04tn82srY5rrn2FpaF7Aa1+jJQMKN4yH/1E63Mo6gbzyLxeiHaxTbWuRdaQHaksXvOk9DCPgUtRiuc50Njo41bI/XNdEt7NDq0Hk7ydTITqdhKufbcBk1Yl8YChFchUqhw7IXM7S06rC10MTq+FC2DDBB+BrizsFz7fxdg01jEba3zi9FuO3Tu+EyxcgrbGmNcFEI4He3s7rd/dUPw3UUWrxtwVozxbvt9KpnByKx+3ZBANZwmnqzcPTFXpUhoaOS2tL2fj/3iAA2WH4tN4r3QZNUFrfiT0PZzBzQA3wa+FGO83fIZCPSOMX4xCM9+ORr0v0dS/BiEVx5Gsji6McJ6v4dW/8UW/z/t26eQ2uYktLNwffFzJHz3cUiVcnuQdc8XSDd0XyaZAvZLVI9b2w5HEulR9vtR+3s0kqCrkNplCcJtj7Ky/Kb2d9C9jukIPfEMkhz7okllMpJ+nkDM+wW0Dd4CSUC+25iEBuUZ6ELXTMtvCVqg7osx/i6E8H1LswNSb/02Jleah6sL47tGg5PRZPJMCOFOJIltbfnuTfINMRbZ+Dna0kTrgxFIar8KXS6rjekuRIPbzhDC3Uhy7Gd1+l2McUa2uM5GE8FatIiOQzzUM8b4oS2uJxtddiR5qetpdPQbyLVGj79EIYg2RuihIdnifYylOcD6+g8I6TTN6jDC+vgB440G4cMmsB9ZW1cgXv0cyefGxkiCPcD69C40Rn6EJuXeRrcPED9NsX6eixamHmgn8yJSP65EvHe11XXfaLDOEMLliP9rEODgSqTq6Y52ct2ztFeYYNUP7VAnIb7dy+pwkJW7AHggxlhri8EMo8VGaBe6j7W5D9rVO5roSGvvxSTz5EOQ1sBvwHezND9AfDYL8db1aFezBYKFz0Jj22HhcyzOHKP1k2hsXoguEe6EnolW7gFWVleSWnsIAr1sgsbZEcjn+g2099OR25T18SKMcBVivpFowr8NDUQ/bK1BE+5vELNPRzpVdwr0hL1+MOoG+nZBEskqxEx/IbmSXIlUOo6QWG35e/yFFv+fJPMIS9CguJvkLewxGttiGmP1+jliutUkt4+/QQuWLxK/Itm1mYCYbTTSPy9CEMmNMO9nlqcjem4knTe8i7brrmIZQTo4rEKTxhRLPwUNzJesno9ZverIrHUi6RXL2w+Dq43G00gIk1fROc57JKTSApLKaBzJk91SEiy2zug/wto00PIcb28tyWfHcnRRzuu2Mgs7SqewTu9Y2/ymttN4IkldNcP66xbEV/UkVM5Sq9sia88YkjrQ819i+T9nebrxwUcQH9VYOwcajbx+C5Da8TYSsmqB0WkWybvgKAv7rfOpaAJca2kn2Pe3EaJmREYzr8/DJASWo5pWIfjmy0Z7N7kxFd3On2x5bUsyYTEACQ01aDH2sbCEdDP5dst7EVIrrTQa32PpHkcCiKMOzyMdQE822kwy2s5BaiK/+V6DBKM/WV1HoMuzUyx+P6PfCMRzwyxvByRch8beaKP5zqTLtg6wcD51m1v/au2rQgtwPebW2PrkHQsPI6mkNqeIW9l2mTvX9+TdAYvDKCOoD4jts4nIUULj7H8fkKxOejgiyeM4+z0HSVNLSY456pFE/DW0GC2zuDPRWcMU0qR0RsbgX2Nd95FettuJ8XqsRQO3hoREmkQyzzA6+15NY9ejY0luNfO21ZAmpbqMXo6wcB/Vm9vvOpI1Ub9v8G/WlnqSP+1XLc4LNHbR6aYyxpAM47mHsEuNLostz48s7bsky7jPGR0eRjr+ySS4Xx1mGtraPMrycXMKQ5CE+hKSWseQpNBxlmYWCdr5geUR0a6nVJ3+gXinR0GcIUa/SdbnY5AaBevzxVkfvmXhsdYvA0i2fP5h+bnF2WnW1qPte+4adgxJ+FiChI/5JHeWjszxtCNIbj497QoMrYV2NzUk5NIEEuJsMRIgHCk0moQU6okOlH0xG2R9NA1N8I7u+amV7Xdj1pBg3dNI9qhqSQbvVpJQctH64HZLt4h0PuHjYoXV+yIS9PgWK8v5eiQJ6Ras/09DQlo9aYe7OuuH16y9PYzGtWhnuYBklfZaa+c19m2B0a4mm5+Gk8ZbNUlQWk5aEIaS5qqu/r1zcWj74pD7kM5hidUkiON868Rd0WB1aF0/Y/CFaJudT7rvIZXM55DUVm0DZXcksc40xvwvJPm8h6SJYUh6mm/xx1v8KWgyGV+kHr7YuMlmnxAmkgay2+5xiXJSFh6JBuxaS7Mruq+x2uo5Dw3Ym0mmum9EO5J6pPr6FRpcDlkcnoXHW76O53cfxG4d9Th0+Wg1Ovh1icsPb+9HB/qrSP56Hfr6OZLk6+EVaMc1AU2KU+37BZb2IxKUtSrL517L5wckg3VOd0cL3Wy03h+p2tYWDGTPa4nldS42SWWL9LgszkfW53NIUOAJWb+Nzeg42ug4BPHc+0Xyv4sE8/W7LV+x+A9YHLcf9XVr4zQLv0q63+B9Pozkoe4rVt9atJjcYPH9ctkK0iS/GPH/IVl+U72eGU+OQQKSp51Aus8x2eo638r2S3H3kHx0T6HxTm4FyZvhUhLc958k68GLSdDcapKP6tGW76WkheVMknCY2/jyheMpK+dD+z4OjYc56GY9RkO3MhxJu5yHrH/GkGyUuYFIt9y6HI2BJ0nj5WqkEluLeHK60faX1s7/6lwcKrM4vEdC+ji22TukFiFVlpDs2b8KDMvS34Mm06nW8a4O2cXztd8+UF5HkNmpSLL+FVLJ7IKk961IF+oOQZPzDNLdipssv1dIl2yOQzDXE0m+GAYjSXcZQj/5JR1XzcxDE6P7oJ6G1APVJBeGf0A67B8YDf5p8R5CW+Td0ACaj85Pxll+z9rfRSSExhSr0zxr02BsArY29LY2HYkWkykWnkrCktehA3LQxOCL99s0dra0GdLX+kUpx8DfjwbxSqOB79hmINXLFWiADSLpl6dg6CnrnzuztFU03m3mdbrE/j/N2jvU6LoSuN7i/N5oehVp93cFCev+LJpklhod69D5xEYkPwnT0OTwetZvD6LzoGmW5yjL46qsbddkE5dLoBtZX34Hu8+BdiYzkVrjRqQCvAgtJhda2e5I50bSBbFr0YT2M0v/OuLzHKE0iuTGcwTJ8oBbCDjHaH+J5f1jpL8/hMb+SyJaREcZfWutn5xmt5EWoldo7JckAl+0OlxLci07CqmfhqFxNASNsy+gMeIIuj2Quupyq+tUS7MEIbDORgKPq1ZX2VuILPuFfV+GBKEZaCGch/jgOCRQ/BXtbG9Cc9GjyBDiDcjO2TqOkNrr/dgfSNs9hjlR+O/8+45oIC5Fg2yjGOObIYSdkEPyuUXy+h2SJIvabjE0xmI0+I5CzFiNbNEvyuJ1QxC75WiA/RUdNF0eE7phZwQYKGYMzS1WuqR5ODrACqzrGnRzJAXPQAy9JzrMWxRjfDHLcz8EHRwdYxxfUF4D+gItbIcjHPYCNFjeRQd++1qdupbKy/Lb28pfYL+7Rxk33AuZ+J5nyK7lUQbsNokx1hXJp5fRcSfvkyBXop9Fk8Y7lldP+5bTaJT1S7F+bnDbGULYK5pLz7xO9ruvJemOJoKTMBMWUXcMctqNRov7fJLFzQORGYZgtF2S0yvIFMe7lr4W3fLOXU/uhqCXwxAMczmazN9Gwk51COFsYOsY4+CCNvawtM+iyX42cq4zPIuzI+u6CT2KdQ3GNbjxDCEcH2N8yeKehM7K3g8hfDnGeE9edozxN3lfxsaudANpHP0sq/pWCBa6OTqM3sva8I8o5NO+NDZmuXmMcWhW7pfQZb6i9bd4/xVj/ANFniAjm59HY6Aa9esT0dBPIYQz0W7k+xSgBkMIh6KdzvJKIO7a+/nYLw7+2CUmN7a2imQ3Z3Zc199ts/DXEMKnaGyb5RokZWyBpKJaJH35962QpL41GvCOdf6OZVkfDVIZQvhcFm6ArBaDr9qlnctjE9C3LDwTSfwHICn7JaRqeT7qQlKptm4UY6y3si4lOctxp0M9SR65ioVXkGxRFaP39KiLUoXlNvRDqXBLHoOvXogWyMdi5rc5hPBzdBjYiI4xxrEtpOs4pBOvt3y3RsiWKWgX4uFVraBjFVJ1XokOM5ciPtoKqWoujzFObaL9B2c/97G/f0IWXwNyV3k62pkdQ1KRrCI5rOpv7eyOVC7/AO6PBYYjQwiDY4zfLFKHXkiwGICk5v9EO45NEMrp60ga/wkaE8ttcfdwbtiuIZzlPzHGuFcpGjRBm08iS8vfNOHtJ2gBmAf8wBba/PtotDtbBzrr7Uc7BDdueR86K+uJzivqkNA2Di3mF5PsMnVDc8hGWXgpUrsN8sW33Z+O2qKsrxdJZ29lnbDUOmap/R5PMufgJi/qsvAKCw9G29a37PdqpHs8iqQrHEOyAzQLTQaD0MByWy5+WDoKM5dhZbt9nP9B6qWnEFNV2d+ZaIezBKkAtkES42qSWYmZaMGqRVJ9YdgXxlfs+yB06BYtziCSSW1/v0vya7uI5CEskpArrq4rFl5B0rVOIumm/4kOmG9Auwjvr59nYVdJfbKgTzz8UNY/eTjvt8dJB++Pk5Bi9cC9Mamtakle0WqRbn+U9cXkFtB1FnZoihAsfsnSzV74OUFdC+m4iKRCm4d2IPch1V9X66eFSBXxR7SoPI14pYbkYvWjLOymKVYi/qtBqtA6EvhiBVL5HGt9+B5S7bk9Ij/wfxotdouMJrn9q9esfo7qWm108guC37N+OJZ0EdR5x1VLrkJcTLpomaueVlt8T7ea5GJ1SRaeaeErgMczXltCMi3zN6TKOc7oPAKdR0xFMOHjSAiqxYh/9re0uyM11xxr92skpNqzyGbXLKPPzvb/KnQWMwYhvH5obZhk4emW9jNIvXxxe8yV68yd63vy7oDFYSQJYZCH/2yddKn9XWgM48x5IEkPfiA6WF6D7kX0MEYfg3YFNWjxOcqYwA/Jog2W20hOeFz3PD1j8hnZ/yaSHJD8I8vH7fe4cT+34+OHvzn0rYakZy4MTyOhMJYive8YJOX4gZqbEJlKgjjOsP+dZHmNIx0ez0JeqwrDc0kHg6uR3vhXJP/Nz5IcwVyKJu8l9ne0lf046ZC0qf4pFXbnMF+0djnSZbzV7xGjt9tcGks6ON7caLxtC+m6jORM51BIrkiz8JQW0HGm9UdXtDA8ZOHrSG5o3zfaXUpCj11kbZ+LDrbdCOOpaJLycy6fFKvQ5DcDLQBfsPaHrJ0OhliRtf8AJMAMJ8FY/bb3nWi3Vo94zceIAwbmZOW/iBbiIaSzlS2sz6ehOwcz0QTZjXTetUNGCzdNMsho4RZNjyPxwnFIKFmR9W01ulPiYT+nnGf0PM7qfVc23laSYLXj0F2RV9BuaILR60ckK7QvutBDQhZ+gBafIRZ25NooEoJqk4LwuI6YOzcE20pbxBjfLhL+Fto+b0mC0nUjSTcPkvDtD6IVfjWaoPZBnf091KmLUOe5S0s/37iMdLj4OcQwK9EgmocY7Ai0ICxFcLW9MMk2xuh2derQpNYPQ8NE2RZy6RUrcwsL11tbioVXxhi/QnKxeBa6NLZLlGqnCk1yrxltVsYYd4sx7gwQk/7ZVXNYfbctEnaVCEaDTWOMV1naWTHGU0jqvQuRuQB3k7mv9cmWaNDFZvqnVLgGDcbfksx6gCaA2Uhg2JzkqnMeNOjb3Xjc1i2g61jUlydYnpdGnVGsRTziYa9HOXSsAbaM0l8PRWcXhyK9dl8ksOyNJuT9SdZjXV00O8pNqF/0/AxSrc1Gqpx+djYXkb7+oxjj2picVP05hHAD4mW3oYTFB/H1shjjwZb/GzHGnmgXPR6pTruiMw0fI1sEuRhdCOxg9N4TmSM52Wi3R4zRJ+A+UY6oatAZ02qLV4P49YdokdgcHXpvYrQIRuMBJMSU36v4CHjFzh66AjcF+ZPoEtMZZQ/rz15okTnAvq9BC9muaJfpZkr2Q0CSvUme4ba3NLsG2XvqTuKpLsBm1pZNLQ321+m7H+Z6N+rsrWPOAta3ZN/eL4LkPY30mA8gVMX1aGJ83r4vQ7cOIcFQXZWxyMIOuzzawssQI3o8d4A+APhZVv5ohAZ6E0krU9CAfgANjKFogfBt+iuYH1yr95M0lmyXWNkOfZvLutC3eWhAFIZ9F/BLtCD9V9bmr1s4t42zNVrIfotUC8uNft8i+bp2etQWCY+wNp2NbonPtPAKkv2qN9Bk5cbspmff5+Z90kz/NBX+yMLVpLsGOR1dvXO1tdNhw1NInunKpet8dGh/o/Xph0jSX2llenhxC+g43tpxBAlL75PsciSgzEYG8yCpSE+yOO4y9Tsk2OyBJDeji0gX0GYhVI6jdWaic4Cvo0lwBTpjG2H1+hpaHB63+DlaydUkl1mbRyMY92yj/Z2In+ba/xYixFJfizPPwsOMxkeQDP59A6l+nkDqrOXWjtlW7qZZHZwWdWhxOImkEjoJTfLVCH76spV1PjpYdlP+tyPec/8cc9EY2gXxwHtIDTvN+uYwy3M52lX8mgRnrTPaTbb8Flhei0l2w+aS1JPTSDuW3siDXbvPnRvEgXSGMNgRXWjqjgbNXCQpL0VG3t4yMwWLY4zPhhAuRmqUz5tkdQfaOcxGBrUusvy/gQzJfaOg3D2AM2OM/2PIluuR6d3dszgN35Hq6mIkBf6OdNu2J9AvxvinEMJ/oC3uY5bFJGvbgeiw0H0G1Flb8/BO6MxkJhrM460OTaEztkILRkSTw1+RamA22g30NRr2Jjlu9/B4q89uSMLaEk0CeyEGH5Ijl4KsXV4ZY+xm37tGHQjnfVKqf0qFG/rG+vAXUW47z0U67vuK0HFvtGgHtEBuXoSWpej6PLoMF5Hu+loEzXwLHRz3RzrqPsjsQzl0nGh12RepKDa1+o5BbjUnB7khHR7lVvRbaBf6agjhGuDoKA+Fe2LubT2MFrQvGA02RQvSE1EHvttj7jwzfvgXtMvLEUGnxhh3tf//McZ4qYV3RhPq/QiGe6PRdoS1+XTji8OjXMbugkAb/a3NJ6Fdn6she6PJeHvSROtGF8eghbenleG0uATt6gaHEP6A/CIcFmTh9MMY42dCgcvQEMJi0vgCHfTPM3q8iCb8g41WM6xee8YYl4YQPo0ExLVIrfcMEhi2st+vA6/EGPuHZCvLVZcLQwhjrI4L1zuiaX1L9h/HF9uFtPV7a8poj/pXoiy0Tf4WkqA+VfC/n7c1/0r31f/WFy1UP0bSuKN7nkBAhu4tSNsTTdpjkL7+m8XyydK8ZeWdb/H+iJA4l6HJ+/wS6dfRjxfUY3ypNhRLW6n+bCpv0iW7ssZrc3khlVRXT9tU/hZ/cLGyOppX1zuzr8+3nE5oIvw3GqN6/PceaGte7vdtMZVJS+pBdvO7NW0oqEOT9SlWVplldEXIkF/b4J+MdMPDSA5buiLpcDiCZ/oC8q/oMLqS4U9hC5GV+zhSM+TlHo0uLPnvwVn4mCyvUuGW1qmcPE9AqqPLkHQ8Ee0spqNJewBSn05Fk/2fEWyyMDwBu0lMsv31qOUz3/L5I5JufbJ+BC0eC9Bu6nWLN4Fk/6vW4h2LoLHDrK5+r8Pr8VBWj+dakPY664OGBQQDFlhf5uHhJb43CiP10eH5d/vfYUiyL8xrcIkyBmd5FS4ahyE1caO0WfzhJeIPL1FW0XHYbvNjRxa2Pl4aT+C7Z69v6csN71EQjmgwug2YetIt6tiC7zPQ9ri5sn1h8fALbWyPwyIL6+M+IXyh8LJaQ7/7kQ71CqQWcHs3GyF10yMIybXI6rAQSU4/tHBNhcPDSDfhbyH5acjLdUOM99jv+nauUzlhd0k6AKk05qPJtB4dgPudgRo02fshbmF4FZLUj0X9fxdSV9WgyX+A9fVCi3MtBjNGi1MNmqi9Hh6vBp1FXImEgaVIbVSPFoKm6lFO2rUkSHAs8q7JwvUl4pR6HV5cjW6YV5EQjUNKTNKNvqOJfioSNE63tyGvwrRZ/Mkl4g8pUdaQts6HnYtD48VhDckUQkQHpI7zji0Iry4Sdts8Hq+K5Ge33O8tKbtY2ta2J5bIc2pWz6oszrQ2lOeXvtagBWETpHf+JZo0JpGgfIMtzijSAlKpcE90AOzfHU44Fh3CPoJUHvVZPWvauU7lhN/Pwquzen9kNAv2/f0s/EGpcJ42C3vauRa/t/3OjcQtRqqlhvLs+21Iwr+K5BP9aosTmqlHOWn9AL8PAnUsRvy4qdWzyr7faXFuQRfrpmXfG4Wt7O0sr4fRIvQHYLuC+WNndKY0pOD7dlb+kOz3ZMvrYWvDzla/IV7XLO7O1uZnEPCkIX5ebl5WYbi93w0ByjoFOD4KBjoZweO6WXhOuWH7XZ+lXwKcHnW47PH6IUnv2hZ8nwz8qpl63I7QUIVp5yFfCC1uDzqMnFckz+eAO2KMu9vvemQB9Qok1bWEfhOQimp3hM5ahKCjQ5FJh6sRamW3KCjfZgieORLtkBZXODwOHSL79+7GI35vZSRSu6y18ItIV/zNdqxTS8P16GAf7O5J1KyxEu3MotE0FglPIUFRH83C87K0r6IJ6F/td3WQTwosrz/Z9xlWJujWcNcY46/QrnF0jNEX/l7N1KOctO6J8F6Syfbt0C7nWMv3YqS6uhdBjDexOJOQyq1ROITwU8xHRYzxTMvzDaB3CGGnIL8vIHXrLTHGk0MIOweZ1wHdFRlo3/cF+sYY90Tj/AfWhj8ij3cnIwHjREt7BpoLfoXBV/P4ebkW/gxSuRWG2/fpiBVofb40hmYWhn9bbth+P5Clv7igjN+WKLvJ72XWaayXVyTO5Da0p1ieYwvqmrd5dgvp93fMPn1BeS+jexwe52QLvwY8ZeE3sziVCs8mXRrMv/+dJE1eiBaHk/NwO9apnPCrWb0vzML3ozsF0Nilbf49D+8BvFYk3JA254E8ThZvXPbb0Y5PkXYCeT2eJVmKLVWPctLugXijC5K2HV4612gzO6tTFyRgrLQ43ye5583Dw9BOZnZBmz+LBJwzsrHnl/1eJO0UBpNg128icyyFcaaR3KfORIsJCCFXVST/PH7Dd/tdNNye73qfvD9OL+2EUqIMZEWl6t8RZWUDsRhao90Yv6Po2JEvksCL0TGUE6Y4kGCdBSCnU2F5SC1Uqh6jm6pHK9PugCT3cR4uknaSf8/jZGnHFHzP21xb0F5HF+UT+djs+5iC72OytKOz8Jgs/rgi+RfGz+tUNNye74agVlrnMaNYbQ4X+X1oJb4XCc8PIRxepOzDgAUVbM+hzZXV1jIs7CqFhvZnT5dKtadSdGyHelQsHDVbrMNHMcZYTpjGfeDh+SGER7M4nrfzQGF53Yrk5U+3ZurRmrRzgP9AB/M7W7jhsXp6nDx+Hu6Wf7c2H+5ZZNm5EU3/7nPmZiTrBN2y73mc+SQV4Hx0ngVSZ3raPP88fsP3grF3WJa2XZ+NOqKQ/4VPsQHRmnDh7/kV+l4Y/jZS72wS5Ozcv38N2asZ2MJ6lwrPR4fETZXV1jIaFiAat7/o5FPhcGvpWOl6VDpcLh81l9bDlwGvhhCuROoXT+N0uqogr0lBpskL+/MUdL7QVD3akrYt48LL9e+XAQ+EEF4DVoUQLkUXIPuoOuFKZMaFEMJV6CLe1ZZ2PskcRg1pcXkE+K2lHQ4cFUJ4yfJ8zvLJ858IHGlxdrXvLyFzPdda/HwctuuzoS4OxQZEi8IhhE3RKt/wv2iHVgihU+737dBhXcnyYozv2GT6BrpsBNqaHhFjnB9CaHEbmqj/dgiHP7RYWS0po4nyfAG6I8g3RTWyWVNs8mlzX3m4DXSsaD3aEm6m35rkozyth/P9WldwAAAO70lEQVS0WfgDdJ8hIDMVGyF0mfNAIT9fgs4O3rCD3lp00/wo5G7zL020oUVp83Abx4WXu0XQjXrQzfVTSGY+3kMH5qCznr4WPh6ZlPldCOHr6EY2IYSRyLCih3sjXj8N3WF422j6JuLzD9GtcZBZmT2sLV0sDkan99D9m8Jx2L5PR+iu1udLYwhZHs6hYuWEt0PSQW8L30o6tMrj5QdS5Xw/H7i9mbL3BQ4s8v0gzDNUK9pzJ3B2ke/fRgiowjbvhyB9raVfXl4O5XsXQRGbgvJVKlwOHQv7eet2rlOl+u18muejPG0eztN+BaHj+rMun+d0yvl5O2Qe4gJ0kDzKwicCt5bBCy1JW6lxkZc7AFlx/Rm6fPhX+/9VSEgaivhzu+z7c8io3stokXkUXVocYOkfRwvsdEu7L9Dfyt4PmfK5AKGr7rHwaaQD6WMwSwIWv3dhuN3nzo4oZH2+6JD1jCLhnLnLCbvFzTMsnPsgyOOVQjeUg3ooVXYpNMQzpNucLW1Pjp7Iv+dIirzNhSiOtpSXL0B5+x8Ezm9l/uWEy6FjYT+PbUOb2yNcqt/K4aM8bR5uSGu/lyL7XYV8ntMp5+evZHk9jHYwUxEq6OZm6tHStJUaF3m5VyCo8By0EFxOmshfQs6woPGEfRYJWZdP3hcg9NtUBBG+PqvT5yz8WdIi8J7FLYyfl5vHbwi397shqJWOickjVR7enmT6ttlwjPHuEMKtMcZHAEIIt2Vl5Gn84k65348h4cVL1WMrewu/74aZ8m1pe9AN12OLfN8fOwgr0uadPNzG8o5HN0EL2384uvx0RyvyLyfcLB2LtPnWNrS5PcKl+q0cPsrT5uE8LeiS1cvW/pzPdyPxW87P7wJ/CiEcj3Tly+x/S6IZp2yiHi1NW6lxkZf7ETokXhZjPCGEcB9JrdM7S3MNumdyEhIe+tv3I4AfBnmK2wFBbAOwMMb4Q4vTH6mSnkA75U+HEMYhQ4Lu0ySP31BujPEfIYTrCsPt/WwIaKXQRLgYwqBUuDB9fQG6weOVQjeUg3ooVXYpNEQg+RRoaXty9ET+PUdSFLa5LfTLy2tYgGjc/mpkWrs1+ZcTLoeOxdqZhytdp0r1Wzl8lKfNww1pDRTQ4PeYdfnc6ZTz83jkS+R0JP1OtDxK0S4vu6VpKzUuGsqNMR5DMtEB8ur2claG59Wb5Jthf5LfllvQecHpyNxMveWV89QqEm+PR2cJHn95kfjdivwuFm63Z0NYHHKIWh7OmbvZsA2aGoNCHoaY+IEMxbBxhj7o04Lv2yMdb1P1mI8YrvD7aiT1tLg9yGzBDkXq0xvpTwvbfAqwsrX0KyivN7CmSPuLQvkqGG6WjkX6uaYNbW6PcKl+K4eP8rTDgR0NDbMjMNzyeQAYEUI4tQifb0bqt5yf70B0HYb0+m+hibjUeMvr0dK0lRoXP0G7paEG260jLVj55LsETd7+3f+3NUJTgfw+uCOmnex/gYSIAt276GHha9BuYWj2rTB+Q7kZcqtRuL2fj70/B2OwBxATLkNMMY7kJeqDMsP7IH38+Wi7dw2SdC4kqUjeQXbracH3F9Ct4qbqtJ/Fn4WhIdDWtC9a4Ee3sj0DkcXPvD5PIiTHAjRYn0VY8Dqkm/5GG+jn5R1D8un8OnAT6p8dEWLpzVbkX064HDoW9vPfkIvN1rS5PcKl+q0cPsrTHoYWiLXIQu1BSP99M5Ko/xstPjehifZs4F+MToX87EgcR+N8H02i7yB1yvvN1KMlaSs1LvZBhgW3tTZMR0YjJyLgyrNosXD118tIHdoFTepnApfEGG+2Cfv7yBXtB5bnxsgnxLEkt6ZfRGZHtkIH4HsgcxjdLf5I5A1vIcmD4uIs/q4YiivGOJF2fj72iwOAwfO+C3wC2VzZkiQNtCRcRzJGt4/l9RYJjvZdEjO9Wub3oyy/TZspezVizFkW3yWU3dC1+5a2p87ChfU/imQkcBZS9UxH8MLj0OTTGvrl5T2DECtvZO05DQ0Wd2Dfmv4pJ1wOHfN+3p228Uylw031W3N8lKe9F43/sSEEd0N5juVThya5eYjPN0OmpCch4WAGBfwcDV6Z5XU+mvh2RofXJdvQwrSVHBd1SEi5MQr6uj1ysvVvRsex6GziULSofML+jjJanI154CNN3k6XN61ehxgd+yNhaC1adPZBMN1J6HB8DHI2tTey77U5QjgNKxL/3Bjjd2nvpyNOvdfni1QY/YuEc+RBOeH9rIP6W/hR5LGpMN5LFEc3lPqeox6aKrsYGuI14JpWtidHT+Tfc2TEmUhCnMW6KI62lJdD+Z5AeO8LKA3lq1S4HDoW9vM+bWhze4RL9Vs5fJSnzcN52rz/90MIn3uL0OklEj/ndM3zKjXeCnmhJWkrNS5KwkPRLuo6JMFPR5L/BfaOyL6/gKC+99r3C6yMgRa+Dll69bTDrX7vogVgKhpX38vK/Z8icYrGb/e5syMKWZ8vUhEcVyScM3c54c8iSeQ4Cy/JysjjjSHZRynn+33AlGbK/gaS5MYhXeR4q0tb2jOVNAnk3/dCks44tC1fRPLlXKny8gloiLVpKqWhfJUKl0PHwn6e1oY2t0c4p2P+vRw+ytPm4Ya09nsiurw1He0gLy5Cp5yfP1ssL0rzS152S9Pm4baMi0J46JPW5nFocfE2f95+u0vSB+17qYk8n+zztMvQeFpdkP9eWbnvIfPdqwvCDfE7cu7cEKCsOfIgD+cQtWbDURCyPjFB/DbLysjTdCuRV6nvOeqhVD1uQYdpB6CtaUQHYK1uD43RE/n38ejQ7lNRvolr0aCgguVV0RjKt4J1oX8tzb+ccLN0LNLPfdrQ5vYIl+q3cvgoT5uH87Sgs4VPo4toY2KMNwT5Yi5E8eRj47oieZXil4ayW5G2IuMirgsPHYLUQ6cjddA5CJb6GLrfswCdkZyDJv2bkTCzI7q38QTyAf8t4Bzj7X2ytDugs5s5UegojKbjkWrudLQov4ruWxzs4YL4HfZsCGilpuBg3VoQhsb0Wp0hC/J4pdAN5aAeSpVdCg3Rlvbk6In8ewOSIoRwMzqsDFm8SpSXQ/kWo+12U1C+SoXLoSM07uc83B51qlS/lcNHedo83JDWDldHIKz+UGQI8aesS6ecn6F0PfL/F6tHS9NWalwUluEmwIciPyRnosn/DMSffQq+H4wOkufEGI+JMd5gdRmPFtbTC9I+j84b+oYQbg4hfNrqemZWbkOcJuJ32LMhLA6N4GTFoGLlhG3QLDGI3ynooOj6EMIdCGmwWQjhb0g62bYF33sgA11N1aMWoXr2QfrOLRHDbRJC+Flr2oPOTHoWqc85SKWyD5q41yLY4UBgcWvpV1DeP0iey/qgg7+SUL4KhpulY5F+XtLOdapUv5XDR3naJcixzWTM6Y3l82fgnBjj2UiVMRmZldgZ6BVCeLKQn0MIAxDEtbAepfqzoR6tSFuRcVEEHvqBtXkf4Hpr347Ab9BYn1nwfZbVt6nJ/lSE8JuJUG8r0a6pn+XbBx1+32rl5nG6ICBAo/ghhIEhhH+jA56PPVophLAXZtgL6VC/jfR/OVSsnPBWCBL7Vfv2Z/t+Jo1RDKXQDeWgHpoquxgaYmuE6pjeyvbcjBaCwnoeglQ/RyGPcQMQpnwHBHNsLf28vP5ognjHyv62lV8KylepcDl0LOznu9BBaWva3F5tKNZv5fJR3geOnumDbv2+x7r9fxrSjV+EIL2HI9hpzs/en6+hCXsgUseUGm/FeKHctJUaF83CQ4O8vl2F1Eibo8n7USTM5N/fQLuIT2ZxXkcQ8HORes6/vwd8CfXVFz0cYzwxK3ebYnFKxW+v52O/OACEEDYBvowGUxfEGIVQsXLC+6CJsh+y3vgCOpgD4Zx3RtDPicDdLfg+CR1mNVd2Dn3zibWt7XGrl8XqOQkx96UVpJ+XdzGwDZqEHkcHn01B+SoVLoeOhf38Uhva3J5tKOy3lvBR3gcLkCrxQIr0fzTYZAjhIOA84Ousy8+F/bm0CF3L5YXm0lZqXJQND80n7HIm8lJxOmJSr9SzQSwO/hhzn4skwQVom/kvrQhXoYGxH5KkqtGEdjgarJe14LtLF+XWqQp4OMZ4YxvbswwNkF2aqE9DWRWgX9HyYoy7tkP/VIqOVUhK7tJBdapUv5WTthZJ1ntbG+9HB6qF/f8K0qWfiw5UPV5Rfi6zP9uDF9oyLhrxeeej52N/5hBC2CuE8EtDD9xMwtgHpM8rN1yHtqw9kKmCb6Lt+AI0QEaR0A0t+V5OneoQGiIgNMQ2FWjP/gi5UVifG9AlpxBjPAE5JakE/RrKizH2iDF+CemaK9U/5fZhc3Qs7OeT2rlOleq3cmiXp+2OoWcQJLRnif7/BemANY/XwM+t6M9K8UJbxkVD2hjjCZ0LQ5GnI3Gz6+NFOtWXkS7bw9NbGs7yqrG8voCkqHrE6O+jQdXS72WVbeVPqVR7StUnL6uS9Cso72Y04VRVMP+K0LFIP7drnSrVb61I+xw6NG2u/z3NDErzc0v7syK80JZxUdjOznfd92O/c6AMqFg5YYN1XkmCzuVIhHLQDc2iHpoquyXQtzLDResfQhgbQvgxCTbXHuW9hOw39UGTVKxA/mX1YXN0LNLP7VqnSvUbZfARpdEzH1ge6/R/jPHR2DyKp6X9WRFeaMu4WF/w0P9Lz8d+cShg7lJQsXLC/RBTd0G3ej9CTL0dssNyPtKhvgn8uAXfn0ODrbmyWwJ9K7c9v2minn0MvrqygvTz8o5BB4E7IQTH2grk35I6NEXHwn4e3s51qlS/tYSPCvtgAFog1ul/h03GGFfGGC+JMfZlXX5uaX9WihfaMi4a0nYkPPT/0vOxXxz8Mea+O8Z4GmLEB9FhWGvC76EDNM9rJHB5jHFmjPH/xRh7tfJ7OWV72kq2p8l6tgP9vLxFMcabYownVjj/StGxsJ/bu06V6rfW9kHJ/s+fJvi5Nf1ZKV5oy7go2s4N/dmg0EqdT+fT+XQ+nU95zwazc+h8Op/Op/PpfMp/OheHzqfz6Xw6n85nnadzceh8Op/Op/PpfNZ5OheHzqfz6Xw6n85nnadzceh8Op/Op/PpfNZ5/j+FjUFx/Efi9wAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"acc_grp = df.groupby('account')\n",
"##quantity_ordered = product_group.sum()['Quantity Ordered']\n",
"\n",
"accounts = [product for product, df in acc_grp]\n",
"plt.bar(accounts, result)\n",
"plt.xticks(rotation = 'vertical')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAFKCAYAAAD2aJMUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXmUJFd5J/q7EZFbbV29L2qJ1tJaWgIkkEHYZjCyAcE5Y8k24yePj8HzeIfBAzNmjGds5viMV46N/Qbe8A54wYCxHx6QDWOELcNoQAZbFoKWWlu3tlZLarV6q+quJbNyie2+PyK+iBs3bixZGVWZWRW/c/p0d1RmVmRmxP3u9/v9vu9jnHOUKFGiRIkSIrRhn0CJEiVKlBg9lMGhRIkSJUrEUAaHEiVKlCgRQxkcSpQoUaJEDGVwKFGiRIkSMZTBoUSJEiVKxFAGhxIlSpQoEUMZHEqUKFGiRAxlcChRokSJEjEYwz6B1WLHjh38wIEDwz6NEiVKlBgrPPTQQ/Oc851Zjxvb4HDgwAEcPnx42KdRokSJEmMFxtiLeR5X0kolSpQoUSKGMjiUKFGiRIkYyuBQokSJEiViKINDiRIlSpSIoQwOJUqUKFEihjI4lChRokSJGMrgUKJEiRIlYsgMDoyxOmPse4yxRxljRxljv+kf/zPG2POMsUf8Pzf6xxlj7BOMseOMsccYY68RXuvdjLFn/T/vFo6/ljH2uP+cTzDG2Fq82XHGqYU2XphfGfZplChRYpMgTxFcD8CtnPMWY6wC4J8YY3/v/+w/cc7/Wnr82wEc9P+8HsAfAng9Y2wbgF8HcDMADuAhxtjdnPMF/zHvBfBdAPcAuA3A36NEgN/62jEsdSx86d++YdinUqJEiU2AzMyBe2j5/634f3jKU24H8Of+874LYJYxthfA2wDcyzm/6AeEewHc5v9shnP+AOecA/hzAHcM8J42JJpdG62ePezTKFGixCZBLs2BMaYzxh4BcB7eAv+g/6OP+NTRxxljNf/YJQBeEp5+yj+WdvyU4ngJAZbjwnHTYnKJEiVKFIdcwYFz7nDObwSwH8DrGGM3APgwgGsB/ACAbQB+xX+4Si/gqzgeA2PsvYyxw4yxw3Nzc3lOfcPAclzYZXAoUaLEOqEvtxLnfBHAPwC4jXN+xqeOegA+B+B1/sNOAbhUeNp+AKczju9XHFf9/j/hnN/MOb95587MpoIbCqbDy8yhRIkS64Y8bqWdjLFZ/98NAD8G4ClfK4DvLLoDwBP+U+4G8C7ftXQLgCXO+RkA3wDwVsbYVsbYVgBvBfAN/2dNxtgt/mu9C8BXi32b4w/LcWE57rBPo0SJEpsEedxKewF8njGmwwsmd3HO/5Yx9i3G2E54tNAjAN7nP/4eAO8AcBxAG8C/AQDO+UXG2G8D+L7/uN/inF/0//0LAP4MQAOeS6l0KkkoNYcSJUqsJzKDA+f8MQA3KY7fmvB4DuD9CT/7LIDPKo4fBnBD1rlsZtgOLzWHEiVKrBvKCukxgem4sEtaqUSJEuuEsZ0Et9lQ0kolSpRYT5TBYUxg2W5q5WGJEiVKFImSVhoxPHxyAScvtGPHrVJzKFGixDqiDA4jhl++61F84lvPRo5xzkvNoUSJEuuKMjiMGNqmg7YZ7aFEWoPLAbfMHkqUKLEOKIPDiMFyXJg2l46F/3d4GRxKlCix9iiDw4hBVQltCv+3nTI4lOgfjsvxP753EqZdUpMl8qEMDiMGy+GxG1gMFrZb3twl+scjLy3iw195HA+cuDDsUykxJiiDw4jBduOZg/j/stahxGqw4s8C6VnOkM+kxLigDA4jBM65lznIwUHQIKySViqxCnT8oFBePyXyogwOIwSqY5BpJbPMHEoMiI5JwaGkJUvkQxkcRggkNss3sKgzlJpDidUgzBzK66dEPpTBYYRAGUIarVRmDiVWg7ZZ0kol+kMZHEYIVAFtSXUOYrAob+4Sq0G3zBxK9IkyOIwQaOGPZQ6l5lBiQJSaQ4l+UQaHEYIVZA5lnUMWXrrYLntN9QGileSNR4kSSSiDwwiBgkAvJXMoK6SBZtfCj37s2/jaY6eHfSpjg0CQtsvrp0Q+lMFhhEBWVstxwbm6tqFs2w00uzZM28WFljnsUxkbkOZQZp4l8qIMDiMEyhA4j2oLpeYQRc9Wu7pKJIM6/ZafWYm8KIPDCEHMEKIOpVJzENEtKZK+0bHUTrgSJZJQBocRgiiwRlpmCP8uNYcwcygDZX50S7dSiT5RBocRgpgt9BxHebyklcLmcSVFkh9ty6OVyuBQIi/K4DBCELMCy1FrDqUgHWYORVAk3zh6Fp+87/jArzPq6JQV0iX6RBkcRghWhFZK0BzKnV+h1b5/99gZfO7+5wd+nVFHlzSH8vopkRNlcBghJAvSpZVVRJA5FLDQ2a6Lhba14Wdzk1upDA4l8iIzODDG6oyx7zHGHmWMHWWM/aZ//HLG2IOMsWcZY19ijFX94zX//8f9nx8QXuvD/vGnGWNvE47f5h87zhj71eLf5nhAFFjNhMyh1ByKtbJaDofjcjS79sCvNcoou7KW6Bd5MocegFs5568GcCOA2xhjtwD4KICPc84PAlgA8B7/8e8BsMA5vwrAx/3HgTF2CMCdAK4HcBuATzHGdMaYDuCTAN4O4BCAn/Efu+kg3rhJVtby5gZ6dnH8OX2eF9sbt6DOdXlAK5ml5lAiJzKDA/fQ8v9b8f9wALcC+Gv/+OcB3OH/+3b///B//qOMMeYf/yLnvMc5fx7AcQCv8/8c55yf4JybAL7oP3bTISJC22paqcwcBP7cLoBW8j/biyu9gV9rVNG1Q+dbqVmVyItcmoO/w38EwHkA9wJ4DsAi55xy8VMALvH/fQmAlwDA//kSgO3icek5Scc3HawEnUGkmErNQcwcBl/oKEO7uGIN/FqjCnIqAWXmWSI/cgUHzrnDOb8RwH54O/3rVA/z/2YJP+v3eAyMsfcyxg4zxg7Pzc1ln/iYwY4I0tEbWvM/pTJzAHpWcZoD7aQXVjYurdQ2xZqZ8vopkQ99uZU454sA/gHALQBmGWOG/6P9AKhF5ikAlwKA//MtAC6Kx6XnJB1X/f4/4ZzfzDm/eefOnf2c+lggojlIVdGNih57zGZFt8DMgTKxCxs4OJD1FyiGiisRxXeemYt8xhsFedxKOxljs/6/GwB+DMCTAO4D8E7/Ye8G8FX/33f7/4f/829xr8Xo3QDu9N1MlwM4COB7AL4P4KDvfqrCE63vLuLNjRvSeis1ql5wKDOHMHMoQpAmym5hAwvS5FSqGtpIbS66loO/OfJypAPxuOHps02867Pfw73Hzg37VAqHkf0Q7AXwed9VpAG4i3P+t4yxYwC+yBj7HQBHAHzGf/xnAPwFY+w4vIzhTgDgnB9ljN0F4BgAG8D7OecOADDGPgDgGwB0AJ/lnB8t7B2OEeyEIjjTcVH3M4dScyi6zoEE6Y0bHIhWmqlXRio43HvsHD74pUdwwyUzuGrX9LBPZ1V47NQigLCOZCMhMzhwzh8DcJPi+Al4+oN8vAvgXyW81kcAfERx/B4A9+Q43w2NNCsr0Upl471QkDYLcSuRIL1xgwNlDjMNI8i6RgHnm55DrGOOzjn1i2NnlgFsTC2nrJAeIVgJMxwsh6NW8b4qp+xEKtBKxRTBARs7OFBH1i2N0cocLrS84DDODRSPnvaCw0a0CJfBYYQQoZKkCumqrsHQWEkrYW2K4Day5jAMWmlhxcST/q46CRSQRylg9QPOOZ70g8O4voc0lMFhhGC7HDXD+0pMJxooKroGQ2elII1Sc+gXIa1UWbeurJ/+xxP42T99MPUx863xDg4vXeyg2aOeVRvvviyDwwjBdFxM+K6kyIAfl6NqaDA0bUNehP2iSLcSZWs0l3ojohNkDsa6UTiLHQvLnfTCwgt+Vfq4BodjZ5aCf4/re0hDGRxGCLbjombo0DUWK4Kr6Bp0jZWaA4qtc7BcF5N+QF7coNSSmDmsFzfes1zYLk/9fZStmWM6uvTY6WXoGgNjG9MoUgaHEYLtcFQMhorOYu0zDM07XmoOxQrStsOxe6YOYOM23+tYDqq6hkZFh8vXp1aGAnhapnLBp5XGVZA+enoZV+6cRFUfrfqRolAGhxGC6bioaBqquhYTpCuGlzlsxB1KvyiqtxLnHLbLsWumBgC42NqgwcF0UK9oqOje7b4eC1kwyjWBqutaDlrE148pnXfszDKu37cFFV0b2wCXhjI4jBBsh8PQGaqGFhv247mVtDJzgChI84Gqayk72zW9wTMH00GjqqOiew261mMho++ol7DwiwaAcdx1X1wxcWapi0N7Z7yMfgNu2srgMEIgbaGqa7ExoRWdlZqDj0ivoAFuSlqUdvuZw0ZtvtexHExUjTBzWIedOn1HSUV3F1rjHRyO+RbWQ/tmYJS0Uom1huVyGLqGiiJzICurVWDm0DZt/OIXj+B8s1vYa64HeglT8voF7fZ2TnvBYaM232ubDuoVPQgO65F9hsOF1A3p5oX5GeNYXXz0tOdUOrR3xtccxu89ZKEMDiMEy3ZR1VlM4KKMwtAYnAIvwqfONvHVR07j4RcXCnvN9UDPDh1GgwQHy8/CGhUdM3Vjw2YOXctBo6KFtNI6ZA6kC3UTMoeL4545nFnGvi11bJ2sepu2MXwPWSiDwwjBdl0Ymicciva+kFYqVnOglD+JFx5F2I4Lx+WYqnttwQbhz+mGNnQN2yaruNjemAN/iFaqGusnSHczrq0LQuYwjoL00dPLOLRvCwCgomuR+e8bBWVwGCFYDkfFUNFKXuZQ0YvVHLrB7m58etF3/YVkul4BMJjmQLRShYLDBh0VKtNKaZ9Zx3QKsboGmoOtvrYutExUDQ2MjV/m0DEdnJhr4dC+GQCIbeY2CsrgMEKwHBcVjaEmCNKc80Bz0AvurdQLbuDxuTnpnKdqXuYwyK6TFqWKzvzgsDEzh67lYKKqw/DHCSYtxpxz/Is/uA9/+b2TA/9OuqaSKKwLKyZ2TFZ9G+h4LazPzbXgcuDaPV6bca/+aHzuobwog8MIgaysFYMFmQPt8rz2GcVa5oLUf4TaOGehF2QOfnAYiFYKM4etE9UNqzl0TAeNio5KBq3Us13MNXt4eaEz8O/sZmw8LrR62DZVHcsCshW/PmNLw8teK2P4HvKgDA4jhIiVNQgO4e7W0LRCq1sp5U9K/UcRtNhQ5lCI5qD5mUPbHOupZElomzYaVR3VDFqJejANKlhzzjPrHC6smNg+WfO7AYzXwkrXHGk4hsZKt1KJtYXlkrYQVkiLvLhnZS1QcxhDQZp2pGHmMIDm4EY1B9N2sWKOT6DMi67l+kVw6ZlDt6DNgng9JdJKLRPbfVpp7IKD/54o2I7a+NWiUAaHEYLtcFR0FhGkTcFR4xXBFUkrjZ8gHWYOJEgXoTlo2DpZBbDxCuFsx4XpTxLMqpCmzGHQzYJIU6oCDeccF1Z62D5VHUsxl4IDDeAqmu4dFZTBwcfZpS5emF8Z6jlYjgtD1zxBWqKVqjpbO81hjDKHQJCuFydIGzrDtgkvOGy0uQ7UkbUhupUSPrNORj+kvOgKAUGlZ7VNB13Lxfap2ljuugNayf88xzH7yYMyOPj47b89hg9+6ZGhngP1UBJpJXF3u2aawzgK0uRWGuDzCCk7hm1TGzw4VLOtrFn207wQrydVlkKf8bbJKio6G7s5GvT+SHPYqI33jGGfwKhgrtnDcne4VkbL8Vpze7spHhwDvAtQXzPNYXxopZjmUIiVVcOMXzex4YKDKWYOHq2UZLvsmOn207zIyhzm/dnRO6bGU3PoOXJw2Ji0UhkcfCx3raHvYDwrqwaXhzco8bFB+4wiNQd7DOscSHMo0MpqaILmsME6s1LmMCFkDknXeaeguhdRw1JtPKjpnudWGr9dd6A56F4Ll43aeK8MDj6aXXuoXzDnHKbj9VbiCOscaJdXNTwra7Gaw/gK0pMFWlkrOsNM3YChsQ3XfI8yh3pVF9pnJFhZCwoOWW4lkVYaxzoHWZCubNDGe2Vw8LHctaD7FaTDAGUEhmA39KqjyYvvF8EVSCtledFHEbQTDTSHgaysIa3EGMPWyY1XCCfSSlkV0t2iBOlI5qCglfw2JdunqqgYLLE536giZmUdw1qNPCgFaQCuy9Hq2UNtACZ67iu6Bs69YyKtpOvF0krj2D6DFpKwt1IBtJLPxW+bqG48zUGklTIqpIsSpLsZVtYLLRONih7MmBi3hbVnOzA0Bs0Ptoaurdts7vVEGRwArJg2OB/uLFtToDjE7pmBldVgqBTcW2kcBWk612I0hzBzADyaY6NqDo1K/gpp1Wbh4ZMLeD6n1Vu8npJope2+O0x05o0LTNsN7lFg49JKmcGBMXYpY+w+xtiTjLGjjLFf9I//BmPsZcbYI/6fdwjP+TBj7Dhj7GnG2NuE47f5x44zxn5VOH45Y+xBxtizjLEvMcaqRb/RNDS7/ixbh8Md0hhOOxBHWUQ4jLiV1khzGCsrq3+uU1VfcxhgYRGrzwEvOGw0zaFNmkMlu0I6rc7hP/3Vo/jv//uZXL+TNh01Q1PTSq0etk95A5bGUnNw5ODguQg3WuuVPJmDDeBDnPPrANwC4P2MsUP+zz7OOb/R/3MPAPg/uxPA9QBuA/ApxpjOGNMBfBLA2wEcAvAzwut81H+tgwAWALynoPeXC6KFtUiraD8IgoChBRee6USDg1Fw90e6cbtjlTl4N2aWuJoHYhEcAGydrGw4zaEr0Eq6xqCltMhOE6RbPTt3axH6nVsaFeVrUesMABHb9rjAtF3UpMyBcxRK+Y4CMoMD5/wM5/xh/99NAE8CuCTlKbcD+CLnvMc5fx7AcQCv8/8c55yf4JybAL4I4HbGGANwK4C/9p//eQB3rPYNrQaUOQDrMyVLhSAIaFok/TeF3e1atc8Yp8yhazmoG+FUsyI0B/q8J6pGsEBuFASCdDW0XSbRp92Uxns92819b1BAmGlUkmmlSaKVihFzl7vWurnuZFrJCOpHNllwEMEYOwDgJgAP+oc+wBh7jDH2WcbYVv/YJQBeEp52yj+WdHw7gEXOuS0dXzc0hcxheMHBDwKG17KbzsUWtIjCNYcxrXOoVbxd8KCDYuzACeZ93tUx5L+zENBKhhccqroGK6GXUSdFkO5aTu7PhhbpmboRe62wr5JHKxUlSN/5x9/Fx+/NR3sNip7jBhsKINxcjFu9RhZyBwfG2BSALwP4IOd8GcAfArgSwI0AzgD4b/RQxdP5Ko6rzuG9jLHDjLHDc3NzeU89E8udMHMYVoprC5bVqh7OR5Y1hyLT196YCtI1w7OeDlpARa03yMJc8QsQN5LzpGs5qFe0wFmTNpiGtAJZe+Oco2u5uT/rnuWAMc9RJm88lrs2LIcLmUMxAfnFCys4u9wd+HXyoGe5qPrBFgg3FxutSjpXcGCMVeAFhi9wzr8CAJzzc5xzh3PuAvg0PNoI8Hb+lwpP3w/gdMrxeQCzjDFDOh4D5/xPOOc3c85v3rlzZ55Tz4WRyhz06CB4kVYyMtof9AtxIMu4iGk9ge9N2wXngeXvAD1mE4XoGKOGtj/oh5C2UxcpNTEQBB2C+6CVaoaGmhFf+MkqTG6lIjQHy/Fara/XvRsTpNdgNnfXcrDUGW47nzxuJQbgMwCe5Jx/TDi+V3jYTwB4wv/33QDuZIzVGGOXAzgI4HsAvg/goO9MqsITre/m3qp0H4B3+s9/N4CvDva2+sOyqDk4w9lFi9W6EUFaKLihHUpRmQPNYx62jbcf9CxvHjIwOF9tO24QcIEwOGwkaqljOZiohrWuaS2yI8Vrgg7Vr+W5azmoGTpqFT2WOVxoUQEc0UqDaw7L/iK6XvSo6WevhIpW/HXzsXufwf/xxw8U9nqrQZ7M4YcA/ByAWyXb6u8zxh5njD0G4M0A/iMAcM6PArgLwDEAXwfwfj/DsAF8AMA34Inad/mPBYBfAfBLjLHj8DSIzxT3FrOxHMkchkQrueScCQXpiJXVYAH9UcTO1nU5TNsNJqqNi+4gZg6D8tWWw4OAC3iVrgDQG9IGYS3Q8WklQlqL7I7gRhI/g16fldNdy0W94mUOPUkkng/6KoW0ku1GaawLrR5++KPfwpNnlnP9vkU/OKxb5iC7lYziBemXFzverOohityZ7TM45/8EtS5wT8pzPgLgI4rj96iexzk/gZCWWndE3EpD2kGHldAs4kePtuwuLnOg97mlUUGrZ3s7xfrAL7vm6FkuagZlDgNqDhI9sBFppY7pBE4lgEZaZtNKqswhP63kZXdVI/79UJHhNiE4AN71WNe88zy10MGphQ6eOruM6/bOZP6+pfUODo6LrXrUygoUTCuZDiyHY6FtBlnWeqOskMZoWFnFPj/VSHAIi+Oo71IRmkPgKPGHpI+LKN2znaDhWdUYrCjQdjgMLR4cNhStZDqYqERppazGe0A0k6RrI28g7lqh5iDbpFd63r1GjROrioWVfndLuC/TsBTQSutzDXuCtGBl1YoPDuQyO7fcK+w1+0UZHBBylsAI1Dn4vZXoXCzHRUVnYIwVmjnQbnBLw4j8f9RBCw8wOF9tyZqD7xLbUMHBclAXModKCq3UNZ1gTob4GfQ7MbDrZw41I645rPTCojwAQr1KeE3TxqXVy7fYr7vmEMs4i6N7CRSozzXXx4GlQhkc4LmVpmqD9+oZBGKGEArS3A8O3v/1Ai1zYhUrMF6ZQyhID6g5uDziVxddYhsFXuYQBoe0DqJd21VeD/3Ww/QsF3UjpJVEJ1zbsoNph4Da6RNkDr18bp3Ftk8rrdO9a9rROgfKHIq0QJP+c36d7LkqlMEBHq1E1rphCbO04FcNWZDmwY1UZCUmvc9wMRiPBVEWpM2BaKUEt9KYOLfyoGNFNYdUK6vpYHYifj30BM0hj+W561N/9D2JryVrIKoBRBSYVnJmDgGttE7Zr2m7AbUJRHWTokCZw/mSVhouml07cE8Ma2EI5zZEu7KaQuZAOxSnQM0hCA5jQit5wUGs9h2QVtromoNg/QWofUZ8geeco2M5wfUQpZXCRToPddL1TQOq4NA2nYBSAtSaA9FYzT41h/XNHMQAV3wRXEkrjQiWu1bgCBjWTIeo5hD2DbJsN7BYGgVaWceVVvI89ERJDKo58IDWABC87obKHGKLMVNe47SAzzbiGbTYmDHPZ+NRf2HmYObIHMRrOswc+gwO63TvUvNHwlq4lTqlID182I6Ltulgx9SwMwehQtoQaSU3+L9epCAtNEcDxkeQ7tluYZqD7bqoCHUOWTOW1xK/cfdR/PG3nyv0NSkbkCukVW43WoxmlJmDUC2d47PpBZmD93vFjUfbtDEZKcqLN1CkLLbVZ3BYjw1OMM5X0XivKEGavjeg1ByGCroAt096mcOwrayGziKNvCw3LNSqBFbWAjSHMcwcbMeF4/JgR2pog2kOls2VmsMwTAnfeWYO9z93odDXNP3PK645xD+zTsr1kDW8Rwb1cyJeXsxCVuTMQZGtUaaSOzi0w8xhrdvA0HmKRXAqamzQ30EbwDJzGCKo6R4J0sNyK9FNJ9Y5mLZHK8XdSgVoDmMoSNM5hnUOA9JKbvjZAoh87uuNtunkplHyomt670POHFTvj4KDSpDOGvspg7I71ecp01w1WlgVAni/mYPL175tNr2XWiRzKK7+CAi/t4mqjrlWb2hzIsrg4LfOIM1haG4lN6yQ1jQWVLKKVbxB98ccF4vrcsy3kncdcc1h9IMDnbNYIT1YbyUeDQ5DFKTbpl14cAhGhFaj4qnqM5OvhyRBOm/mUDPUmUPbtCPBIbSyipqD9/h+NYe85zcI6PXlSXAABmoCKYK+t1dsn4Tj8qHNNd/0wYEcEYFbaWhW1jBzoL8th0tWVnIrZV+EX3vsNN740fsSd189uUJ6DIbc0KJBvYIqBbiVKpEiOH8xkxZPznmk79BaoGu5uXfKedE2vdebyGFlpQAwq6SV4jUISbAdF7bLgyI4IHptdUwHDaliG5DdSj6t1Idbab2yPnr/aznPgb63y3dMAADODUl32PTBgTKHLY1KYVOpVgNTKIIDvN2I17I7XMD0PjKHlxc76FhOpPpbxDjWOQS0UqS30mAtuw1F5iAHnP917Bx+4CP/u/DFm2D7luW1yhzqsiCt0hx8KmPLRNzaLC7uWQugGMBVdSNty8FkLW4DFR8TFMGZdqaG0LMddCwHO6fXJ/NXZQ4BrVTQ2iFmDgBwfkh21k0fHChzmK4bhQ0eWQ1sx4WhMWG2gB7MkA7rHPJrDrTQJN0stDujdgnjkTkQrUTzHAqwsmrZRXAvXWyj1bPXbL502+qv6Csv6DuOaA4GUy7wtCBN1ypgTBKI+6CVROovqHMQAk1bEqTVvZW81+A87DGUBKKUKDisOa3kpNBKBbmVKEs9sJ0yh+GI0mVw8DOH6XpF2UVyvSAGAcBb+LwxoTwuSOfIHGihSRIQu5YLjXk3Z83QxiJzIGG0JtJKA85zED/zJCsrfTZrNV86mN3s5J/TnAe0sMpFZ6rPLNQn4teD+O/M4CBkDqGV1Ttm++9PbgQIqK2sQLbuQJnxLgoOa9xu3ZSyV0B4DwUJ0vRdXLqtpJWGCnIrTdeNoc4Qtpy4rdJy3AgvXulDcyAKJKl+gQayMMZQVwxlGUVQdkPzkFVN5OZbvdyD5i2XR2glI2EuNX02WbvY1UJ83SKppWB+tFghrXmjUOVrqCs8tmboiYJ01nXSE6isMBPzjlGGpBKkVe0zAKCZ8XnImcNa1+v0FLRSEByKEqSp5qRewY6papk5DAvNroVGRQ+6oQ4zc6hKu9hQc4hmDnl2yyRqJdFFnt3Qe11vp5hv4Rvm8BHZykqivchL/8Sn7sen/iFfMZksSDPGlBsE+mzWSpSOBAezuODQUWQOFUN9DXUECqoqXQ9dy4XPduaglUKrp0wr0fnI7ikAEe0oUheRMzjsmq77r7NOmoNwr+r+pqIoK6voMts1XR9aIVwZHLp2wLurZt6uF2wpcyDKRAwa/bTsbgW0UnLmQDvKWkXLveP68U/+E/7fbz6b67FFQxakqxLXyznHmcUuzi3lu5lkKysAf2H/Jxx9AAAgAElEQVSUggMtbtbaCNIiXVWk7hDSSiGNk1Sw1RUWJHkOQ9d2gq7FWbQNFbDVKvHeSkk0FxA1AXQtJ9gIZTmWqCPremkOFDTFzAEYfPCUiCCIVnTsnqnhfLPMHIaC5a4V2DmrQwwOlhtvAmc6HJa9uq6sKwGtlKA5CG0ovL772YvSueUunnh5Gc/Pr2Q+di0Qip1h5gCEOzbTt1Hm1QbkeQ6At1jJN/la00piRlKkIyqwstbSexkBgrPJb7XdkzSAmXq8/kEFCip1f4a0+JzQWpuhOdhuMCku6/NYkjSH9XIr1eTgoLHCGu+JQXT3TL3UHIYFMXMYVOBU4fj5Zi4qxnJ4dICIrsG0Hb+3EjXey6855HEr0QWumtilwpGTiwDWbpHMQmiTDK2sQMj10q67n+BQ0eKZg2xlXXtaKVwAi9QcAlqpogoOcVqpZmjQNOZtFqTMQTUESIUwcwgr/eXPT667kM+nZ7lB3VHe4LBjiG4lIH2IUr8QLci7pmuYb/UKnRWRF2Vw6FqYrguZQ4FfwksX23jLx7+Dbz87l/lYsrISPEHaa/JFQaGf9hnEXScFh57tBju7vIL0Iy95wWGtXDtZkK2scl8eWljzLOKuy+FyKGmlpMxhrd53lFYqLjismA6quhYR3ZMGGnVNgWaUPoOu5eauhxFNA94EQ6HiWRkc4ppD13aww+9YkEdzmK4ZgV13vSqk5czB0JLHr/aLjumAMe937Jqpw+XAhSFUSZfBQcgcinYrnV3ugnNgLofbQLayVgQrazWgUYq0sjqoC5lDHofPkZMLAIYYHAKxU9YcorRPnvOzhEaHIpSCtDV6tNKRkwv4g288lfG6dkT8BdIzB1pgq4YWMTL0bCfYQGUGB8HKyhiL6Hgdf8MinhNjLFZ82rNEWim7zmGmURH0jfWxssqZw6A1NyI6lje9jzGG3TOe0D4MamnTB4flrhXwqcTzFwXqFtnO4UDx2mSkW1n7adm9kmFl7VlOkDnkqXOwHRePnVryX3M4wUGkLID4QkfZUp7MIWyRHg0OqkLIdXUr5QwOXz96Fp+877nUa0serAMkd/btWG6waMfqHCwXM3lpJdKFKNDomkKQNiLPkdug9GxvIp2uscxRoUttC1salXXri6VqnwF4WWyRFdL0Xeye8TKoYdhZy+DQtYMLv+gKaeJDV3ItVvGCrJ7tCazyJLis9NV23OAiTtpJ9WxXyByyBelnzrXQsRxUdLbmfYaS0LOiKb0cHNr+LjNP8JJ7WRGGTivl/GzpsziT4sxqSyNCgWRaqROhleJ1Do2qDkNTV1eL6AaCtH9tVcJri4LDpCJgyZPg6hUdk1U907211LEwOxFmDutmZY3RSqxQWikMDmXmMBR0LQem7UpW1uIWAAoOeRZT2cpa1bVgFynXOWSNCRVvqCShWbayZmUOR17yKKUbL50doubgdailFiNhRbN3UxIlk4tWol5WquCQVCG9hrQSY97CnZdWokXwzGLyotExnchgHUDsghrPjhoJdS9BC+4cbj56Xl2RlarqHIBoxs45R8/2xPHpeiVzVOhSJ5o5rPW420RBukAzi9ec0PuMtk9WoTEMxc66qYMDXXiilbWo6A+ETf3ycNWx2QKGFjxPrnPI0hzEQqpuSvsMKoKrS+4UFY6cXMT2ySoO7p4eHq0kOKwAb54DIGoO/QQHP3PQorSSLMYCoci6lhXSExUdkzUjN61E39fppU7iY1Z6cc0hrHOQaCVhtyrTSkEL7hzBoStld2LdyIrCykrnRN+H7RsFaoaGyZqeS5CO0EprnDkk0koFBgcv4/M+I0PXsH2qNpRCuE0eHKivEtFKbE1opTzFUypaiW4myig0jUFj2ZqDeEMlZg62Ewi7tYqWGEQIR04u4MZLZzFR0YdqZVX2tAk0h/yLuB1oDopiJukaCATVNSyCa1R1TFaN3JkD7dBTMwcrrjkYCVX2HcsJ2pKIGYLYgjtP5tC1HBgaCzIy0RbbMR1UDS3IgAmiIE0bj3pFx1Qt+/NYpOAQ2GbXnlYSs1eC9x6K2Vh2zTCLAzzdYSRpJcbYpYyx+xhjTzLGjjLGftE/vo0xdi9j7Fn/763+ccYY+wRj7Dhj7DHG2GuE13q3//hnGWPvFo6/ljH2uP+cTzD5k18jBB1Za2tjZQ00hxxVr7bDY1ZW6gohLmB5LHPiDZVoZbWk9hkpmcNSx8Jzcyu46bJZNKo6Opaz5uMYVaDB9YSAVgo0B+99m7abGUDpOSq3UlJvpbWjlbwd/mRND3STLNA5nUnJHJSCdMIOu2M5qCsyB7GRntxWI+m8xF5OYiamOh8guusOq+A1TGYEB6KFZxoVr/VJH21gVoue7QTT60QYRdJK0tzv3dP1kRWkbQAf4pxfB+AWAO9njB0C8KsAvsk5Pwjgm/7/AeDtAA76f94L4A8BL5gA+HUArwfwOgC/TgHFf8x7hefdNvhbywbRPgGtpOuFZg7UMTLPTtZ03ODGBaIBQUxhDZ1lag7i71PdLJxzdG0nViGdtOA/6tc33HTZVtQrOjgfzvwHL3NIbpUsZkxZ1BdVVcv0gFpzWA9ayfBopZy9lejzP50iSMuDdYDw/crVvF2B565VwvuAKLWaoSurx2XEqT8tQsvJGghA2RqPvK+aoWO6nh4caPNFo01r69A4kzIHGUndblcDb1pe+DntGlKVdGZw4Jyf4Zw/7P+7CeBJAJcAuB3A5/2HfR7AHf6/bwfw59zDdwHMMsb2AngbgHs55xc55wsA7gVwm/+zGc75A9xbnf5ceK01hTjLAUjudb9a9EMr2fJsAbHPkhH+W9dYpubQyqCVTMcF56FoWK9oqfN3j5xcBGPAq/ZvCXZ+w9AdepajppWkIisgW3ew+xGkrSjlUTRo156HRgnPiWiltMzBjgzWAXLWOehasFmIZg7ZmydyGhEigrQV10CAaHVxaIXVMFlN12Do/qICvTzGikGRFBwMPfu+zAv5MzywfQIXVkwstte3EK4vzYExdgDATQAeBLCbc34G8AIIgF3+wy4B8JLwtFP+sbTjpxTH1xyy5kA7j6IoE2oHnodWis1zSMgijBw9XOiGmqyqLaqyaCj33ZfxyEsLOLhrCtP1SrCADMOx5FV1K1olS4I0kE0BJdFKquly69FbaaKiZy6GqnNKtbKayVZWZXAQaCXaLIgagKopYfy8nMh3JNpik2ilqqD1iYWOU3UjtfGeHBzWo+W+6USzV0KRNnh5zvb1+7YAAI6eXi7k9fMid3BgjE0B+DKAD3LO085SpRfwVRxXncN7GWOHGWOH5+ayW1JkIZzlEGoOQHETnfqxsnrzHNQBIRIcdC2HW8n7fdumqsqbOWhDIVhZAfXO+OjpJXz/BU+MBkIb4jBqHXqWG4imQFxzEINw3sxBppVkO7Pr8ghnvhagRdNzK/WnObR6dkCPinBcjp40WAdQDzTinEd2q3Q9mLYbqS3J61YSszvRFtvuRbl08ZxCzSHMHKZqRuqoUOrIumUdG2cmZQ6VAjMHMVADwPX7ZgB49+J6IldwYIxV4AWGL3DOv+IfPudTQvD/Pu8fPwXgUuHp+wGczji+X3E8Bs75n3DOb+ac37xz5848p56KZtcCY8B0LSyCA/LNS8gDCg7tPLSSKw27V3DrgJc5ZNc5eL9v22RNueD35EIlqbUy4csPncJPfuqfMVUz8H+98QrvOf7NPQzHkrwrlW2Z/WQOVARnSM4Z2ZSQNC6zSHQDWknvy61E565yLIUdUJNopfj8BBL7ReeP3II7e4Z01DQg0kpty84UpMMiOo9mSxsVGqOVcnYXHgTJwaEYzcF1vUAtBtGtk1VcMtvAEy+PWObgO4c+A+BJzvnHhB/dDYAcR+8G8FXh+Lt819ItAJZ82ukbAN7KGNvqC9FvBfAN/2dNxtgt/u96l/Baa4rlro2pqgFNo7nNxZXgm7Yb7F7zOFAsWz2yUv63npNWYgzYOlFRZg4iVQAItJKw+P3O3x7Dh/7qUdx02Sy+9u9/GFfvngYQziMehubg7UqFz0WqcxAX1qzMIaSVZCtr1M5MgdTQ2LrVOeShNXuWG4yRVNU6JBWchf253PhjBUEa8K7h4FrxBemsepie9B2JOoCXISUI0g4J0oLm4G/akqi2QJBueH2Y1iNz6NluLNsEvPdQRMtuCsby93Zo38xIZg4/BODnANzKGHvE//MOAL8H4C2MsWcBvMX/PwDcA+AEgOMAPg3g3wEA5/wigN8G8H3/z2/5xwDgFwD8qf+c5wD8fQHvLRNi0z0gecD8akAXbr2i5SyCi1dIE2KaQw5BerJqJBa3yZoD7fToJl5sm/jTf3oeP3HTJfj/3vP6YJAKINBKQ9Ec1IK0LdA+5FxZLa1U1fXIGE1arGYnquhYzppMwiOOebJmwPbpoCz0bDcYQK/OHPxWFbIgrdgAiVPgADGTdCLT9/JYvUUXHBDVATpJmoPBlFZWujeTRoUudfzMnxpnFmxFVyGNVirid8uBmnD9vhmcmF8ptGtvFuJhXALn/J+g1gUA4EcVj+cA3p/wWp8F8FnF8cMAbsg6l6IhDvoBkgfMr/a1AWDvlgaen1+B6/IgQ1FBHhOaKEjrWqaHv91zMFnTE4vb4i0OooL0fMtzRfzINTtjO+tAkB4KreQm1DmEVtbtk1Ustq1gJnIS7KSurMLi2aiGrcxnJyqYb/XQs12l42YQdC03cCvR+6gruHkRPdvBZdsmoDF1rUM7WGTUVlaRVhLHUgLhZ9Cz3UgL7rxFcKIuJPdWyqaVwmuTbK9JC+Ky366b7qu8c0kGQc9xMVutxI57mcPgv7udkPHdsG8LOAeeOruM175i28C/Jw82fYW0mDkU2byLMoe9W7zGWWkVyI7LwTkik+AS6xw0ljmrtmV6mUPSzRLwutJOkW7Mi37veGqbLGK4mUNU7JRHXrZNB9v9OQBZ2ZqZ0JVVphZpYdvqZyR5Ouz2A9vx5oRTnQOQz93Ws11M1Azsmq7jdB+ag6pCmgK9vFnwaKVQj8gjSMuOMtIcOOd+iw41rWTZ8cxhyr83kxxLi20TWybChXqYmUNR8xy6VkLmcAmJ0uunO2zy4GAHTiUgXGyKyBwoOOzxuyqm3fCWwlZZVXDrQH7NYbJm+EN8VFZWWgyoc2aUVrq44lVjKoPDUDWHaIFVYMsUnDs7/eCQTSu5/mvItJL3mj2HOrxS5lDN9br9ou2/3kRVD7qVZhXCcc5h+gWBe2frqZmDHBx0zRvAEx3LGV2QqgKtJFtZ8xTB1aUAzrn3OZqOm5g5hJqDYGX1g2WSSE99lcTftfZuJUdNKxnFzHNI+t72zNSxbbKKJ15eP92hDA4KzaGIL5mqo/f4mUMaDUO/L6ozCEVwfVpZA1opwZceOFAMiVbyF4ILaZnDkGklcVcqLnScc7RNBzumvHPOCl5WgiAt25kDWslfhIp+30R/1X3NAcie6RA0fzM07NvSUNY6JNET3nCd6C63Y6ozyZ7lRnbyeToIiA0dgXDjseAXcCXVOQSag7BxyRMcSIz2fle+iYaDoGe7yvYZFa0Yt5Ks/xAYY7h+30yZOawXZFqpSM1BppXS7KxhtW5C5qBFaaUszYEE6Zqho6vog9QTqALx7yBzaGXTSu11zhxsx+uXJO5KaaEzHU/EdVwe0EpZi3gw7EdhZQUUtJL/WRTtWAp2ipUwOGTZWcXd9d4tdZxe7MS+Y6rKV7mD5FYPiYK04yqK4LJ6K4VDpOgcgbAmIcmtFBeks4PlcDKHZCuraGRYLYL50Yogev2+LXjmXHPN3yNh0wYHzjmaXRtTtShnCRQkSAeZQwNAPlopSWeQaaWsHcqKSbSSui1GN0OQvtg2MVUzIvw+oWZoYAyZgm9RCF1DoWtGBC10tMhuaVRgaGwAWik6i5h+Ly1CRdNKHYFWmsqpOYiztPfONtCzXSy0o4VwSYN1gGgXVPEcGlW/zkHIHERnG7W0T3JsBcV0Um8lAEHrB7VbSYtkDjTbIo9bSTSU5KngHhSmk9w+Axicdegk0EoAcMMlM7AcjmfONQf6HXmxaYMDTVlT0Uq9ggTpRkUPF5U0WsmNi6PJNQ/ZmcNKz8GksLjLN0y8fUZckFZlDYC3W29U9HURpF+8sILr/uvX8ZtfOxr0wZIDFi10tLucqOpo5GgrbimyNXo9QAgOFgnSvuawRpkDdWUFctBKwve3z89MT0s9lqi2RtnLSJ68liRIO25QbGfoWqZhIwzg0QppAEHwSj4fHvRyqht6MH9a15jy82ibNi6umNgl2KzlIUVrAdJ6ZMjmiNUiycoKhG00jq0TtbRpg0PQkVUMDlIjt0FAKS/tANJcLvT78vRW0rUc7TN6NiaremJbjMQiuECQTg4OANYtOJyYX4Fpu/jc/S/gX3/6u/65ykVr3kJHIu5kzUCjqmdrDm5C5iAtgPSZbM1ZP9EvxMUgi2MniIswaVpnJd0haV4zEO2CCqTQSpYTbauRNziIRXD+tZWqOQg6jzfb3Ps/YwxTCS1FHju1BJcjaOtCv3dYtBJtMgYthGtbyUH9FdsmMFUz8MQ6FcNt2uAQdmRV0EoFZQ4zDUMIDsmLSui5z2dlTcscHJejY3mZQz0hc5Bv4tCt5AvSLRPbU4JDvaIHIuZagr6j/3zbNZhveQ4qmVaihY4WEAoOeYvgEoOD1AhuS2BlXStayehDkA5ppX2zHm0pO5balq0crANQHyAVrSQXwbl+UVuUbkpagHvSpkN8ThqtJDYDlNuyT9UM5ajQh0+GY2sJ1N5jrWaNOC6H7fKAehRRVOudbkrmoGkMh/aunyhdBgdF5lCUIO1lDt7rpy0qtIsTxVGVZROgQebJ50cZylTNCBd9aaHs+ZZQmqkkulOAHJlDjp15EaCuuT/1mv34u//wRvzs6y/D6y/fHnkM8dX0vid9WilbkHbBGGKLp7w7DusciFYqts6BzrtR1VHRPV6/lfE7xOC+Y6oGQ2OxuQ5J1ciAglYSCt281w11l57QSC/r/pDrZ+gcgZBWSspk6HXF2eYA/Mwh/nkcObmIK3ZMBkYBIByQVeSoXxH0vpPmOQAhRbxaJLmVCIf2zeDY6eWBhe88yKyQ3qighYdSeSB5+PpqsNyxsW+2jolaNq1kKygOuZ8SwcjQHGgHPeFbWQGV5hCtF6ApWl2/h//FFRPbptJppaKLwVQIu+YamKga+MhPvDL2mFBzCHfg9Ry0l+XwWNbgvV6UWgxppbWpc5B7ICUthiLMIDjo0DWG3TP12FyHpME6gJpWqhparMcYZQ41KXNInC4oZDSEWpA5UHBI33XLmcOkohkh5xxHTi7gX1wdbb4pZv6qBXxQpAUHQ6q5yYuu5UDz7z/A+96quhazWBN+6KodWGybWDFtzNTjldpFYtNmDi0VrVRw5jDTqGAiRxdTlThK2UJVj86r1bX09hl0I4luo7jm4MbaM1A1datnw3TcVFppvTSHZteCobHEXRQgaA40w6KmY6KanTnYjhuzsQLJmgMZC9aMVvLf42RNz+FWijq39s3WY5lD21QP1gGiw3WA6BQ4IFoE15NmSwP9ZQ4yraQ6p+C+C4KDkDnUK7HgcGqhg/mWiZsu2xo5rmogWSSoMDJpngOAzO4FIrqWgzs+eT8++KUjkWP1SvKy/JZDu/H/3HnTmgcGYBMHByWtlLEz6gfLPq1k6BqqenrzPVURHJ2L3N7B0FggpqoQ0itGrPKZ0JOaowHU7tgVWmfUkIR6VUdnjXvYAGGRYtpIcapzaIuCdK7MwVXuzuQNgliUVTO04iukpcxhspo9DS4c3emd694tjbjmkEYraXErqxgcdI0F3Wm7Vlh4mEkr2eFnRYgL0gpaKeiuy2OLo6qNOekNr7lsNnK8SM1QhbTMIXS55ad7PnbvM3jqbBNPnw2tqfKI0GFi0waH0K0UzxwG5Swdl6PZs4Pd5kRNT+WqVSMraSdSkS5EQ2NwUs6v1QsXyTQrq7w7IRsgVUenZQ4TFX1d6hy8IsX0HVJFZ7BsNxhwNFk1/OCV5VZKp5XEOgfSZxo5MpJ+0TE9Xz8t9JM1I5OyEwvFAGDvbB1nl7qR+oO2qR6sA8Q1h44VbybojQr1rKyBFkGtvB31ZyBOcSNQYCFaKWnYDyDSSumaw5GTi5io6rjGbyMvnjNQTOavgsqNReg3c/j+Cxfx6X88gZqh4cxSNxDRVd/FsLBpgwNlDlOqlt05Lq5/fm4eP/i731QO/qYCOAo8Exm++7AILt6yW17AsmbVhq6dUHOI0UpS62vA2+31bBcLKa0zCHncQEVgWWpvogItdG1/hkW9oqGRI3jZjhvLygCVIB1y4Gnf43yrhzf9wX19e9A7ljfLgbKjyZqBVl5ayT+vPTN1WA7HRWHGcKogbcjtMxSZZEUPMgfVECAV5J5d4nMW2mZQtxA7H2FR99qyi5pDfFTowycX8Kr9W2KZX1KmXBSCzEGxqTCEAJeFlZ6ND931KPZvbeAXfuRKtE0Hy/577KQE9fXGpg4Ok1U9crHqGoOuscSdkYinzjRxeqmLv3jgxdjPKCuhzKFRzRscwq9D0xgMjcUuRD1jnoNIr9ANH6OVlJmDjp7lpPZVIuQRfItAs2tlcqthnYMnwOYt0vPGsqZoDkL7DNoxpwXFE3MrePFCG995tr/xtW2pU+lUTc9vZfW/Q2oZQpSg97rJ9ERVqpBW8dyUSXrmhZyag1R5L57jUscKrLrx8wkXVlkPm5ZGhXYtB8dOL8f0BvF11ipzyEMr5WEdPvr1p/DSQhv/9ztfjat2TQEIrcgdK1krWm9s4uBgRbIGQt7+LBQA/vJ7J2M7c3l8YRZVQIu9araAfMzQ0vvGRwVptZVVHsgChBO70tp1E/JYRYuA3BhRBaquXemFIygnMoIx4C1EKlopJkgLk83SaCVyvz15ps/MwbSDthWAR4vlr5D23u8O/7uiWhAgQ3NQWFnl3Sq1ohBnaCS53+LnFdccXJ5szxRHl6oyB3FU6OMvL8F2OW66dDb2OkVqhirQNaFqK5O3zuHkhTa+8OBJ/Nwtr8Drr9ge9F6j5olpGd96Y9MGh1bPVvLZnjUyO/oTLXVxxcTdj0ZHXgfBwS+cymrnoMoc6P8xWimjCE5sIxFUSCs0B/kCJ7fSxRUv/U+7QBtVT5hdq2IjwnInW3OgKWIrphPYkut+d860qW2W40YaGhKSNAcAmKgkB3naLKyOVgoDoEcr5a9zAJIyh+RFxpC7siqCA1Ubi3UHq8ochIU+OVgJRXBWtPMubeDouj7ii9GqzCHU2NZm45KeOeQLDn/8neegM4b3v/kqAJ6ZAAin+bUVFN+wsGmDQ9KutGrka/u73LGwZ6aOa3ZP43P3vxBZKOXMIWsnG3YIzQ4Oel7NoSoI0qoiOBWtZDtBdXSaQ6hR0eG4fM2KjQjNro2ZRn7NgWpKKC1PG7BkJ9BKhjTvQBxNmubSos3CifmVvgoEPVopLsCmBV65noCyvAutqOagGqwDxOdkdywn1gWU3GtiTUzuIjjFQCYgJTgI2ZpIYwFhHRI133v4xUVcuq0RGV0b/K4CG2eqkFrnoGXTSueWu/irw6fwzpv3Y7c/52XXdC0yzU+VxQ0Lmzg4qHelefuzNLueG+nnf+gAnjyzjAefvxj8bEkWpKvptFKQORjxat2q3Bguo7cS0SuaxmKtuAk9v7mZiHpAK/VSC+AABIvOWuoOrsvRMtXZnYiAVhI49jwzJ5LcSoyxCLUozpCYqCS7zsiE4Lj9dc2UBcjJmgGXhwutCj2/vw8F8K0TFTAWzuEIpsslLMZVXYu4auQ6BwDBSFCPViK3UrpVVNZCAE87owCRxKWLPc3kmR3i6FTH5Xj45AJeo8gaAMFMsGZuJSdyviLyzIL59HdOwOEc7/sXVwbHDF3Drul6QCulZXzrjU0cHNSZg9zOOAnL/iyIO268BLMTFfzZ/S8EP1NlDmkLFWkIRixzYPHMwaeVknaW4iKZ5C5RC5BeSwyvdUZyjQOwPtPgmj0bnEcbI6rg1Tl4FdLUnjoIDinnZ9lqtxIQbf0sag4TKYK02P+nH92hY0UXgyk/+0mjlsRzArwFZutEFRd8zUGcLqdCbNhPAq3UtRx/se6vfYZs9aSFM61iG1AXwZGIvdC28ItfPILzzR5uvXaX8nWyNJFB0ctBKyU13ru4YuILD57Ej796Hy7bPhH5mTjNr2OVtNLQsdy1Ma1wT+QZog4Q5VFBo6rjzh+4DP/r2NmgbfJyx0ZV14IFeKKqBz58FWhEorwjqRpqzQFIHirS6jnBAkNtj2OCtBW3stLUuAsr6U33gLDv/1qK0iTwZgnS5LyhGRbe+WUHL9t1Y8E4fE0t0lspQislvOflro3tk1VMVnU8eabPzKEaXwzTRGlZtAU8aolopbbQSkQFcWYzQAtS/NqjgNdP4z2xZxdBFPRVoNel91xXZA7/5SuP428fO4Nfffu1uP3GS1JfZ61pJVWdA92XSVnV5+5/Hh3Lwb/7kStjP9u3pRFoDl2rzByGjlbPStAc8g0pXxamyP2rm/fD5cA3nzwHIGydQTdJo2rkyxxiswXibiWdWgMnBId2z45YBkmcFdG1FVZWwa2U5lQC8u3MBwUtTLmsrLbrjUaVaKUsnUcuMCRUjejA+zx1DstdryL+mj3TfYnScrFanmlw8u4a8IoWSZAmCjNNAKZrnAb0qDIHyoBlK2uS4Cv3RRJfK+t8AChndlBwOL3UwW/fcQPe96b44kpY8wppJzk40O9OyhzuOvwSfuy63TgoFe4B3ijhM0tdWI4Ly+Gl5jBMkJ9a7VbKNwu22Q0bX12xYxKv2D6Bbz51HgC1zhAcKFUdpuMmvm6SlfXnbnkFfvrmS6Pnp2mR58igEaEEeQBKMG5T0T6j2bXQNp3M4FDPsfgOClVLdRWooGvFjAvSWXO7Vb2VgOgGQeTcqb0ehAAAACAASURBVM5BRek1uzamGxUc2jeDJ88s53ZyybTSZI4uvqpFeMdUDfMrvchzE3srKcZyqgRpcmDJRXDJtJKaEqkGwSG9zoECovje9myp43UHtuHjP30jfu6WVyifL54zsHa9lfIJ0vHPxnJcnFvu4YZLZpSvu3dLHR3LCWZylHUOQ4SqrxKB2gakgXPu2yy95zPGcOu1u/DPz11A27Rj4wuDucsJNzxddLJb6c7XXYZ/+ep9kWNUtJfUQsOjV6JFSKK4SbZWOXOoV0IeOpNWWgfNgQTePHUOpj8mlBbWeo7Mxk7oygpEa116glunUdXBuZrTXu5YmKkbuG7vDJo9G6cWOrHHqCC7ivJMg+v5XVRFbBMyh04OzYHmHVN2MCVRrFUj7AdG5gUS65MmJR49vRz49kXQop0WrAAINFb4uHpFx13vewPuuElNJcnnDKxd5pCqOaQI0vS9qBxWQGhnfW6uBaAMDkNFyGfHd6V5NIeu5Y0YFQPArdfugmm7+OfjF2KDz2nHlLSTtV0XusaClslpCCZOJfRwafsjQgl136IanjvZIOM7RUImrZRjZz4omj3f8dXIqHPQQw0myBxyBC/LdZVWViC+sxbdSoD6fVM196G93u7wWA5RmlxFIo2QZxqcKBITtk9Vsdi2IvO0k62j4S6XKDC5T1GkkC3SSE99fzx9tonHX15S6gH0fNU8a+98KDgQjbW6ZWndKqRVPbm0sJBPxlzTy+h2TiUEh1kvoJ6YWwGQXCy43tikwSE9c8iilZYVYunrLt+GyaqObz19PuCfCZMZMx282QLZgQEIHU25aaWKFlSuAur+N0D0htyeYWWlRWc9NIc8mQOBFtY855dUIQ1IbiWB3w8yQMXrUh+oa/ZMg7F8jiXVDn+1gjQVwi2smGgHhZDZ7SoeO7UExoDrL9kSeYy4WYjULSQEhy8/fAqGxnD7jftiPwutrMl1F4CaVuoHFd2rUVnL3koag7KbL70HVfcCCg47EjKHfX7mcGLeyxzGRpBmjH2WMXaeMfaEcOw3GGMvM8Ye8f+8Q/jZhxljxxljTzPG3iYcv80/dpwx9qvC8csZYw8yxp5ljH2JMZa+MhWAYHFfpVupqejoWjN0/PDBHbjvqfNYbEeDQ5ZAmlStqwJxm0nBYUUSpGtSUV/AMSsESAINtkmCirY5fr6F4+dbed5CLvRDKxGCOoc8o1lTArJ4DYgLcVDfoQjyza4/v6Nq4PLtk7lEaXnQD9CPIC0FByqEWzGzMwehXcXjLy/iyp1TSlqJIM9nkO8P23HxlYdfxq3X7gqClIia4NpTno+WTCv1A7lGpWiYTtwIQNBTNIeszGHndA26xoLMYZysrH8G4DbF8Y9zzm/0/9wDAIyxQwDuBHC9/5xPMcZ0xpgO4JMA3g7gEICf8R8LAB/1X+sggAUA7xnkDeWBatAPIY9baamj3tXeeu0unFnqJtJKacEhieKQkaY5uC5H2wqtrEDoVyck0krCBbl9FXUO/+V/Ph4ZWjIoml0bNUNLvBkJouOIaIt6Cv1D8BrvpVtZqQo8yByC141eH9S9lDYb1+2bwZNns4NDIByLbqUqaQ4pgrSi/cl2oUo6bUg9IEwt8zOHV0lZA5BMK4lZFeE7z85hvtXDT712v/L30bkmBQdqMhm6lVZPaNQU51cUTDt5whwFJtWY0Dm//iRJc9A1ht3TtSA4jM08B875dwBczHqcj9sBfJFz3uOcPw/gOIDX+X+Oc85PcM5NAF8EcDvzvJ63Avhr//mfB3BHn++hb6RRFpUcO48gc5D48DdfExbnRIJDBq2UJo7KCG5shebgOWmAiRQra1CopBCkAS8zyWpZodqZn17s4Njp5cy+QHnh0TTZ067ECnJ637k0hwy3kuW4oa9d2vnK36N8PRzaO4OXLnaCDDUJKlrJ8OtjVlIq6nt2vP0J7dgvrPSCzCatzgHwJqqdb/ZwgyI4RDIHqR2GfH98+aGXsW2yGrn+RQSZV8ZEv4BWGmDnnLf9zWrQs+NGABGGP1tExlyzh+m6kZoR7J1t4Kzf/n8jaA4fYIw95tNOVM9+CYCXhMec8o8lHd8OYJFzbkvH1xRpBVa0MKRhOfDgR5+/a6aOV/o3mkg5TWQIuEnzjFUgzUFVBBeOyky2sgaTzRIE6a0ZfZXE59L74ZxjrtmDy8PGaINiuWtlVkcDsuag+8e81uvpbqUUzUGn1hHRHkZJmsOytNkgUfqpjGK4JMvpVEbzPY/eSKCVWqYyIxFBGgB9V6/an5451KXMQcysF9sm7j12DrffuC9x4QwqpBNadgPed9aUrLOrQd72N6tBz3aVYjShoqtb28y1eolZA2GP4PIad7fSHwK4EsCNAM4A+G/+cdWqwldxXAnG2HsZY4cZY4fn5vrrmy9CNeiHkMfKqtIcCFTaL2YV1HUzqUraShg8owLRSqpiG3r9OK0Uvh9qYCZzzEGHzwynEuDRACJdtdy1g8/s8AvFBIc87boBtebAGPP7ICV/j6m0ktBXCECMVpIHCcnut+vIsXR6KfXcOwmL+KRi+pkIFa20pVGBrjFcWOmhbTqJg3WA8DN76MUFaAw4tC/uvxd375HJbtLi+7VHT8N0XLwzgVKi5wDpi17V0AK6N4tKTIO8GSoSZkKRH4Fs1TLmmj3sSNAbCPs2SnDgnJ/jnDuccxfAp+HRRoC38xertvYDOJ1yfB7ALGPMkI4n/d4/4ZzfzDm/eefOnas5dQDeAllN4LPz7DyWO8maxb989V7smKri6t1TwTGilZKattmuep6xCqEgHT/HFYVLxaOVwpuFBr1vnYyeO30WWTZWgthnaK4ZTsN76MWigoOVaWMFosFBdGl5HVRTmh26yQGZqEV5PsFEgtBN1wNlOrtnatg2Wc1soxHSStEgmDXTQSVIaxoLah3app25Swe87+rgrmkl/VTTUzIH4f647+k5XLFzEtfvi2cfwWtlaA7eOWnB5mYQzSFv+5vVIE1zAMKRtTLmm3kyh0bw77GmlRhje4X//gQAcjLdDeBOxliNMXY5gIMAvgfg+wAO+s6kKjzR+m7ulZHeB+Cd/vPfDeCrqzmnfuBVN6f0ncmglZpdCxWdKdPfq3ZN4/CvvQVX7BSCQ2YRXP+agyp9bSmyAlmgu7ji7XLlIEAcdt7gIA78Ob/sCW5X7ZrCkZMLqcOI8iJ/5iBqDuFNlTaQyGtcGJ+fQfCoEx7rMtpIsMjKmQNjDIf2zuDomfTMgbQLeac4WdMz3EpxzQHwsr55n1bK4vcB4Hyzh1cqKCVAqm2IuJX0SBHc+WYXr9gWbSQnI6iQrqQFLLU7ql/kbX+zGqjoPBGJtFKzl+hUIoiZwzhZWf8HgAcAXMMYO8UYew+A32eMPc4YewzAmwH8RwDgnB8FcBeAYwC+DuD9foZhA/gAgG8AeBLAXf5jAeBXAPwSY+w4PA3iM4W+QwXSBtdXDa96NG2BW/afn8XNE4ijT6KV7JRdrIw0zUEcEUqoVfSIMLvYNlE1tNjiQeeYh1YCaGfuZw6+G+MdN+zBiungqbP5G88lYbljYbq2+swhbVQoBf8kh5iXPTqJtJIcdII+UIKQf2jfDJ4520rdaKisrIBHEZEjTgbnXNlbCfDqUy60epnTxMTPTKU3API0NyFz0KONHOebZiZlkodWEq//gd1KKe3OB0FW5mAIPasIXctBs2dnZg57Z73MgbHB3n+RyNyacc5/RnE4cQHnnH8EwEcUx+8BcI/i+AmEtNS6IG1XKpbgJ1E9y53kzEMFTfPnGicWwbkBXZSFNM2hFQz6EQuYvMyBcw7GmNdYbyIuOoeZQ/pFTGgIQYcyh7e/ci8+8a3jeOjFBaUDph/kGfQDhAudxqL0RyNlME8wPyOpK6u/+4wJ0gn1KsuKivtDe2dgOi6em2vh2j3qnjoBrSQF6tmJamKdhOV4WY9qAdk+WcNjC4uYrlcygkP43b8y4Xui+0BerGrCzpxzjgsrvcTirvA5+Wgl8XesFlVJYysS4shU5e/W4yN8gxqHrODgZw6Nip5707nWGI0Qtc5odtUdWQGhQMhObpyWlnkkYbKW3NGzH7dSRWqf8Wf3P483/O438eWHTgWCnpw5cB6W9S+0LcxOxM+dMoesQT8EcfTp+WYXNUPDtXumsWemjsMD6g6W46JjOfmsrH4riMmqEbmpGhU9JhwTKLAmaw7eqFhZczB0DVVdi2Uky10bjEWLKknkTSuGS3IrbZ2oYKGttsHKAUsEte1um+lD6qk2xNBYIJ7LoAVdbsEtcvrLHRuWwzOzzbdevxvvf/OVqcGhKpxTXv1N+TprWQSX4VYyFCOGgxqHjOxqx1QNhr+JHBWMRrXFOqPZtbFrOt4gDBDaEjsOAPXitJxzVysibTi97bi5C190qUL6kZcWcWapiw/91aNBbYVsZQVCj/ZCW92S+9JtDfzSW67Gbdfvyf1+iBc/3+xh10wNjDG89sBWPPRC3rIYNfK2zgDCYC7qDXR+5wWhXERIKyVZWb0xqLR4i5y79z1GM8DljoWpqhHpjXXFjklUDQ3HTi/jJ1+jPveO6ShphNmJKjqWo+xyGlBdikVkx1QVzZ6NxbaFy1J0AFrgrt49ncjv0zmp5n7Q4ptV3EW4bu9MYhCSz2lQSoXG3a4FzAQ6j6DSK/NmDrrGgtGho4JNmjnYShsrELo00nYfzW4+PlzERMVILGxaTW8lqpCeb5l49aWz+N2ffCUAj1oRaSW62SjVXmibyvYYjDH8hx89mHkRE0TBd67ZC4Ltay/bitNL3WDw0WqQ1hhRBgUHecpYmiBNVaxp7TOAsPmfuGCppsHR4CcRhu5lUmkN+DqWgwkFjUCZHXVMFRHqIApayd+dnlropGYOpLUk6Q1A+BmohgARrTTvB4cszSEP6HsctHVEmlvJ8mdUrxamk+FW0lYfHACPWhoVMRrYpJlDq5esOYQdK5NppeVO/5nDRCqt1IeVVaKV5ls9XLptAj/zusvwtuv3YK7Zi7wW7TBpN7WwYsZsrKtBoypoDs0ervLdWTcf8OohD7+4gB+fbSQ+Pw3NhCJDFZIyh3pFT+SeiRdOcyuJ5yEuxCKdRlhOoCmv3zeDv3/ibKD3yGhL7boJFLwX2mZsN9mz0mklID4jQgYF0lftn018TDD9Tp4tLdA2NHkuq1FjHlSMYjKHtODwm187iqfPNvFX7/vBVb12ppXVYDExfL7VA2P5XIA/+Zr9uOjP5BgFbLrMwXG5HxwS3Eq6dzNkZg59ag5pc6QtJ53LFCE33ptvmdjh35zbJqu4Zo+69XLPdoP+/VmN9fJAdAOdX+5i14y3M7pu7wwaFX0gakkl8CahmpA5pM17zqaVpMlkMVopbmVVBYdDe2ew2LaC4fEyOqYdjFwVMetnIQsr/WUOO4RFOo2mvHTbBD7z7ptTC9eCzEGiUcTeSkVmDvSZD9I6A0jvrXT4hYW+RrjKyGyfkZA5bJuo5tIU//XrL8MHbj246vMrGpsuOBBPnrQrzZpDazsuVkwnc3yljEbFSLGy8v4b77kcjstxcSW9+pJ2gF3LwXLHgsuzu67mQd2nbbqWg+WujV1+2lzRNdx46SwePrm46tdeTmhsqAJlenLRV5rGYwUzuzNopYTMISZId2zl9ZAlSnu0Uvw9zvrfz1LHjP1MtteKEBsmZlXZ/uh1u1MXukBzUNBKdO3Nt3rQWDHXU6UgzSEpc3BcjhPzK2j17IC27Bd52mfEBOkc1dGjik0XHLIG1xMPbTrqhYWCS56FS8RkLcXKaicPu5cRzHNwOBbaJlyeXptAnHHPdrGQUB29GtDITOJURYH/mj3TeG6ulTgqc77Vw2997Rj+zee+p6wnoe9oSx8V0jKNUvcXcVdRDxJkDilWVvE8IsGhGqeVmgnzyK/ZMwPGkgf/eLRSfBGn70flWEqllcTMoYAdOJDcg8u0Xcy3PHNDUpuOfhAEhwI0B9WkulML7SBoJGVyWchqn1E1WDxzyNFXaVSx6TSHoK9SgqAcZg7qhS1olZBj4RIxoVhUCJbLA0tmFkTNgTjfNJ95OFfXxQL3g0NBtJLl8OBGE2+AK3dOom06OLfcizQU65gO/ujbz+FP//FEkEWdXuzisu1RZ81q3EoqQRrwgqK8ANPuLm0SnHge4i59oqoHAZHgaVDx62GqZuBAymyHTkIl82wj1BxkhG6l+CI1XTOCduMTKe0z8qCakjkAFByK2xUXlTnUDB2mUNdDEGeNnFnq4mpp8l0WOOeZFdKGFq+Qnmv2cODAZF+/a1Sw6TKHrJ0/ffnkyPj6E2fx/i88HPxcNQUuDxoVIzE42E4/mUOoOeThfGtB5uAEHHZRwQEAXrzg9aAXg8PlOzxxmiZbEf7w28/hv3/zWbzpmp34nTtuAODt6GTQZyw3B1Qh0BxkWsl/3yrdgbKVJIpAHHjPWNTVJAvSnPNUg8OhvTOJmUOScNyo6qgZGhZVmUMKrcQYC8ThQV0vYZ1DXHMAPKt3kcGBNkeDupXk+5cQCQ6rcNLZfsuV9N5KUUqLc+8eHdfMYdMFh2xaKao53HvsHP7u8TNBw7rllI6safCK4OwY1dKzHW+0Z86dnqg5hMEhebEXrawX/feQt39SGmg3fvKit7iTIA0Al+/0dkrPz69EnvPoS4s4tHcGn/rZ1+JNV3uNE08txG/UZtfGRFXP5eCihVteDIO53YrgEGYO2bSSXATWqEaDfNt04Lg88Xo4tG8GJy+2lbMdOgm0EuAF8EVl5pDenI6+20GDA43cjI2TFe6PCy2zEKeS9/sK0hwSrOjHz7ewbbIKxlZHK1FQzmy8JwSlVs9G13IzC+BGFZswOCR3VAXCL5++5Jf8xY8Wun4oDxGNqg6Xx+fbHjm5CMvheM1lybZCEbSgWQ7HPNFKKRdfXbCy0mKjqpDuF2Hm0IbGomLo3pk66hUNz89Fg8Mz55qBm2rvljp0jSkzh2bXyh18DV3Dh99+LX5cml1cT5mhQYOSkmglUZCWd85i2xAg21mVNNuha3k776TsaDahSjqs2lYv/lTrMGilLU02i1lZBffbSNJKgsYm4vhcC9fsnsbOqRrOLPWfOVCw6WeeQz81DqOITRcckgb1EOSdB+2MaYQfzTbOI5aKIIFQppa+e+ICGANef/n2XK9jBJmDd3MaGktdSEUr68UVr5tsHromC2LmsGOqFhElNY3hwPbJSOaw1PEsnRQcDF3Dnpk6XlJkDsudfB1ZCf/2TVfGOOSkJnlA2D4ji1aiUaUiPO0ozABVTfdEkGPpgecuRI7/5YMnsdy18eOv3qd6GmYnKgmZQ7LmAITmhCJGTTaqeizIUHBYbFtom07hwWHgIjhF5sA5x/HzLVy1awp7ZxuryhyC4JBSIS1PgqPgULqVxgRZ1bei4Na1nGB036CZAwmE8ojJB567gOv3zWBLzt282D7jQquH7VPVSNsGGaEg7WUOs4qme6sBLRonL7aVO6Mrdk7ihBAcnjnn7ZyvERbx/Vsb6swhwf2zmvNT00p5MwcrtgjLGSBtFpKup90zddx67S780befC7LQtmnjU/9wHG+4Yjt+8Kodyud5tJJKc0inlYLgUBtskQWA3/+pV+Hnf+hA5Bj9Xtp9p1Ga/SCocyjAygpEg8Ncs4dm1/aCw0x9oOCQ6lbStcj43rztRUYVmy44tLo2dE09iwEQdh6OG+HDKTj0I5aKUI0K7VoOjpxcxBuuyJc1AOEOy/ZppaxdiWhlpY6sRYB2eBdXzKDGQcTlOyZx8mI7WIif9tt4X71HDA4TiZpDv24wGVRclhocMqysrZ6aVgLC+dR5qrl/+44bwBjwa3/zBDjn+Pw/v4j5lolfftvVic+ZnaiqaaUUQRoIaaUi2jC89fo9uFKYSwKEn82ZRW+BLZ5WKkZIF2mlZ30x2ssc6jiz2Ilof/cfn8d//utHU1+XrO2ZM6SFOof5klYaL1C77qTds7jzoJ3etslqsAtudm1M5hRLRagG/jz84gJMx8UtfQQHShLIrbQ9s5d+eLMstq1CahyAaJGVqonh5Tum4Lg8+AyfOdfEdM2IDDXZv9Ubqi6Lh953NGBw8IvLKBgfPb2E4+e9AJWXVnIVrbHl7zFPNfclsw388luvwbefmcMXHjyJP/r2c3jzNTvx2ldsS3wO0UqygcHMEEb3b22AFVSYpgJ9Ni8vUuZQUHBI6OXUL1SZw3ExOGypY8V0gnG5APA/j7yMuw6fUvayIlArliy3kuPyoLZmzqd9Zwfc6AwLmzA4pFMW4jwH0hveeHAHnp9vwXU5ljv5xlfKIA5YbL733RMXoDHgBy5PXiRkMMZgaAyOX+eQldaT66RnObiY0HRvNRB3pqJTiXCF5Fh66mwTV++ZjgTl/Vsb4BwxgXC5UwCtVA13+Kbt4uc/9318+CuPA8imldJmC9DrkiU6S8MivPsHD+DVl87i1/7mCSx1LHzordekPn7rRAW2y2NV9T3bQUVniYVn73jlXvzdv3/jmnX4pPuDGivumC7arVSMlVXszHr8fAvTNQO7pmvY64/jpMwHAJ4661mNVRQngayxWcEBCA0PVB2dRvuOMjZhcLBTO6qG8xy84NCo6Lj5wDZ0LRdnl7u5x1fKUNFKD5y4gFdesqVvW6yuMdgO96ovM3ZujDHUDR1d28Vi28TWAmysQNQNo9QcdnjB4cTcCjjneOZcMyYa79/qFb/J1JI3xnXQzCHUHL5+9Czmmj088fIyHJcHXVnTJsGF/44uVlft8miWJ/3aBdIcsjYMusbwez/5Shgaw9tv2JM5DIlaaCysREXpnpXeNlrXWCCCrwWC4OAH9CJs0YDYW2ltMocrd02BMYZ9s17QpA2J7bh45pyXWbysoDgJgeaQ6laKDuKaa/YKC57DwOYMDimLu6F5O23KHC7bNoErd4S74OU+bJYiZDqiYzp45KVF3HJlfkqJUNG9AinTdnP5zGsVDV3LwULbwtYCbKxA1FWi0hxmJ6rYOlHBifkVzDV7WGxbuGZ3lL/ev9XbxRH1BPg7fcctTJBumw7+4oEXAHiB4sRcK7sITgwO0mJ1ze5pTFR1HPF7RzW7Nio6yyWkXrd3Bl//4BvxsZ++MfOxREXIonQvo4XDWqMWZA5dzNSNgXf6hLDRXzHBQWyhcXyuhYN+UN9DmYMvSr9wYSVY+F9OKY4zM1xigLCxdMJ5F+Na4wBswuCQ1F6ZQP5u0hwu3TYRFHWdmF9ZdeZArZnP+e6nwy9ehOXwvvQGgq6xwEWVh/OtGRrmWz04Li+MVhI1h50Jg5Mu3zGJ5+dbeJqcStK4zLDWIbwpwyLDwYJD3Rekj5xcwPdfWMBP3+x1IH385aXsrqwJ85PpOa/avwVHTi4E5zvTxzzxq3ZNZzbFAxBkeHILjZ7tDDk4hEaErPGg/aCo3koBreRrBEsdC3PNXpDx7ZquQRMK4cR552mZQ2hESd5ciTVIgDdfe1zFaGATBoc3Xb0TP3il2j5IqOpe21/KHHZP19Go6Dgx1/IWg1VoDruma7h2zzR+7++fwp8/8AIeeO4CdI3hBw7k1xsIhsaCIJMlSAPeDU03Q1HBQdzhqTIHALhi5xSen18JnUpS5mDoGvZuqUe43qwixbyo6hp0jeGex8+gZmj4lduuRb2i+cEha0xoMq0EADddthVHTy97w+NXuVnIAmV4ix1F5jDEUZJi4NyRc954HhTXWynaPkMUo+n37JyuBS00njrThK4xXLqtkZo5nPXvnz0pWg5RY5bjBr2nyuAwRvjwO67D//nDl6c+pmpoOLvURdt0cNm2BjSN+bvg1WcOFV3DXe97A9509U78168exWfvfx6v2r9lVQVphi5mDtmLfb2iBRd3URwxzVMGkq16l++YxLnlHo6cXMSOqZoykHm1DuFNmVVUlheMefN4XQ7cfuM+bJ+q4dDeGTwhZA6VBCsrUYuA2j3zmsu2wnY5nnh5adUGhSyQ5iAXwnmaw/BuW5GKK5JPL64ILjqP5TkpOADA3i2N4P556uwyrtgxict3TClt1YTzzR5qhpZ6XYodk58+24Tt8szxqKOMTRcc8qBqaDg+511U1DH08p2TODG34i0Gq9zVztQr+PS7bsYH3nwVupaLNx7cuarXMbSwKVseTrNm6Djve66LaJ1BqFc0zNSNxBuaROn7nj6Pa/eou2DKtQ5ZRWX9nZ93Xv8/e+cdpmdR9f/P7Kb33gkdAlKkI4KICAYrYkF9FWzY/b2KDUXFLnbEF4hIEwtio0kvAaSX9N5J79lskm3Z3fn98f1O5t7NJlmSbBLCc67ruZ77uZ+pZ86cOefMmTMXvG4/AI4c2pPJiyupq2+kLLBFL5JkWoQtaQ4KdTJm/ppter9tL/TcwoU/u9us1ERz2In29BR4b+eFz9De3qwV6+nQrmyT8wPInJm8raYtXceIwT0Y2mvbmsOgnp22aj5sX9Baxi/UntTRW7ltb0+H0uLQArQvL2OeXTDTRe0H9OvKgjVV1DfGHWJcZWWBr77lUB788hv4/BkHblcZRTfG1ngfdfQFLbDzNAeQe+6ArajZaa+mqq5hiyGSh/XuzLJ1NZsm88RFawHYp3eXFtO/HOjRuR3HDO+1yTPoiKE9qaprYMay9du8mWtrF97369aR4X26MHZ+xU7xrGoJ2peX0b1jOyqqm+85bP2qyraGYt1928SstHPDZ0xdIs2gOGcG91QIjcqajSxcU82IQd0Z1rszqzfUbRbBIMHSyhoGbmFvbVMfyrJZacLCCnp3ab/J6eKVCK+6+xxaAx3a5QBaSeLYv19X0nmkHTV5ABz8MuPJFyG5YPbu0r5V1w8WJfteO/FwVOcO5VvcbwDYr29XQoAY4dBB3VpMM6x3F2KU98v+/bpy94QlHDO8V5N7ILYXrjj/tU32WNIiMW7Bmm0vDu3KoHbL3inHDO/Fs3NWE4ltojkA9OrabL+qVQAAIABJREFUvkVvpR0NqrcjkExuMe5cs9JrhvTkTSMG7LAbbtGVdW3VRp6Zs4qPnrJfkzSDe3aiqq6BF+fJqWDEoO6bzq0srqjmoAGbz83llTUcuQ0toBi9YMLCtRw1rNdOCVWzu6CkObQASfoY2KPjJsa6f798YcfOMHnsCKTge63ZjIYs/ZaXhR32AirCyCMGcc4Rg7b4f6f25Qyx62BzT6UESbJauKaKeSs3MGVJJW87cvBOad9Rw3qxT5+sgRw8oJs9t+q2eS3rpstutiDJHrNPL5ZW1rB8XW2b0UOvzh32OG+lELLb7s40K/Xp2oEbPnrCDmu2xUCT901ewsaGyDuaBTcc7LMOo6cvB3Rz4dBeiQ43Ny3FGK05bL2/iabWVm9kxrJ1HD1s62dZ9nQoaQ4tQLIdDi8wlgP6Zcl3ZzLY7YHysjQ5WzeRkvTbu0vrXS5bA98YOWKbaQ7o35VFFdWb/MybQ2LeC9dUM2GhTErn7KTFoTm0Ky/jsME9GLegonWaA1u2gR+7b29AEnRbmJUghdBopjlsbNzhg2I7Ch3Ky6jZ2LhHRhttV15GWZDmcOf4xezXtwtHNjtwmE5JPzJtOd07tmNor86bzE4t7TtU1uhehm1ps0moHLdgDY0Rjt7nlbvfAK3QHEIIN4QQlocQJhXe9QkhPBhCmOnv3n4fQghXhhBmhRAmhBCOLeS50OlnhhAuLLw/LoQw0XmuDHuAHpZOQRalzp5d2m+KeLmnaA6tnZxJ+m2reDtbg9MO7sepB/Xb4mVGA7t3pJ3vdbhnokxKSYprC0iMov02Qhpsy7VyxKAem/5rK7NSSxf+6BDc7jMrQQ5bvbMisu5s6NCujEUV1Tw9exXvOHrIZgLRYDP5hWuqGTFYIV0GdO9kOtx8cUhu41vbX4N8zuHFl2SuOuoVvBkNrTMr3QSMbPbuEuDhGOPBwMP+DXAOcLA/nwKuAS0mwGXAScCJwGVpQXGaTxXyNa9rl0OHFjQHyKalnjthz2FHIKmvrV0cOm3SHHb9ZP7UGw7kz588aYv/tysvY3CvTjwxaxWTF+88k9KW4IihPTbVuzXYtCG9Bft+h3Y6DAcv/z7x1kJLF/7sbrMS0CZmpZ0JHduVc//kpTRGWrwvIx2EAzbdL1JeFhjcq1OLB+HS4rC1Mw6Qz828+NIahvTs9Io+4wCtWBxijI8Dq5u9fhfwRz//ETi38P7mKHgG6BVCGAy8BXgwxrg6xrgGeBAY6f96xBifjgo/eXOhrN0G21oc2sqM0FrImkMrzUpJc9hJEVl3Ngzr1YXxC+T611YmpQRpU3pLB+ASbMusBDoMB22nOfTq0oHKmo2bPM1g94fPAOGmc/vyVl9tu6uhQ7syquoaGDGoe4uOH+3KyzZFEh5R2AvbkjtrOiM0sIUAk0VI2mZlTf0rXmuA7d+QHhhjXALg7wF+PxRYUEi30O+29n5hC+93KyTG0XxxOHJYT7p2KG8zSbG1UL6dG9K7Q3NoDaRN6bY2KQEcMrA7HdqVvYw9hy2bcI7zvsPOdA8uQu8u7Ykxn/2AtOewm81K5WU77e7otoCk9TXfiC5C2pQunr8Z2qvLVjWHbUW6LdLUUfu8sjejYedvSLckjsXteN9y4SF8CpmgGD58+Pa0r1WQbKrNF4cPnTickUcM2uFTnDsKiQhbvefQPmkOe+aETu7CbW1SAuHusEHdt0xkhq2dc0jw5sMGMurDx3Hc8N5bTLMjkBbzNY6mG2PcM8xK7cvo3GHPNZmkDfstXcEK2ncYS/PLp3Tmpq7ZWZJllbX07Nx+m/O+qI2+kg+/JdjexWFZCGFwjHGJTUPL/X4hsE8h3TBgsd+/sdn7R/1+WAvpW4QY47XAtQDHH3/8tub3dkOH8jI6tivbzGZYVEd3J5S/bLNS9lbaE+GofaSRvXUXLA4A33n74Zsub9kSbNIctuIZVF4WGLkVV94dhXR1bNp3qG+MLV5AtKth5BGDdvum+NagR6f2HDO8qRtzc3jjIQNobGxqIh5auF9k377ZdX1pZc029xugqeZw5CvcjRW2f3G4E7gQuNzfdxTefyGE8De0+bzWC8j9wE8Km9BnA9+MMa4OIawLIZwMPAtcAPxuO9u00+DtRw1mv75d9tgDLC/fW2nPNiudcegAxl929su+XW974fhWBDvcWviMXQVpvNb6lPS2rgjdVfC5Nx60W+vfFvzq/UdvU8p//wn78P4T9mnybphNmovWNF0cllfWMLAVhzLT4nBA/667fV9yZ8A2F4cQwi1I6u8XQliIvI4uB/4eQvgEMB94n5PfA7wVmAVUAR8D8CLwQ+B5p/tBjDFtcn8WeUR1Bu71Z7fCGSMGcMaIAdtOuJugXdnLMyulibKnLg6wbe+hXQ2t2ZBua0iaXoqvVOt7q3f3OYc9HZrfe91aGJoOZDbblF5aWbPF8C9FSF6Ee4NJCVqxOMQYP7iFv85sIW0EPr+Fcm4Abmjh/QvAEdtqRwkylJcHunYob9W9AFDQHPbQPYc9EfL9AruPEffq3PROh6w5lBaHtoDBPXX/dnFTuqExsmJdbavCuXTr2I7undpx2sFbvxLglQJ7pi9aCbYKfbp02Ko9tTkM79OFju3K2KfPKzcI2K6G1ngrtTV079SOssCmi+/r9hCz0t4KHdqVMaB7xyburCvX19IYt30ADqShP3/pm/eaxbu0OLwC4WsjD6Wm2cXzW4OTDujLhO+dXWIqLwM67gFmpbKyQK8uHUqawy4EhZDPl0+15pKfIuxuT8adCSUqewVCj07tWyXJFKG0MLw82BP2HEB3SSdvpRTWvLTn0HbQ/CBcPuOw57ruthWUqKwEJWgBks/67j5w1qtLe9ZuWhxKZqW2hqG9O7OkombTqfTWhs7YG6G0OJSgBC1A907tN5132Z3Qu0sHVm2wWWljyazU1nDowO7UN0bGLVDwvGWVtZSXhVZHI9iboERlJShBC/DBE4dzy6dObtVlSm0Jhw3uwYxl66ioqttkVtqdN8Ht7XDmYQPo1L6M28YuAuTG2r9bxyY3yb1aoERlJShBC9Czc/tNsZN2J5x52AAaGiOPTl9RMivtAujeqT1nHT6I/0xYQl19I8sqa16V+w1QWhxKUII9Go4e1ot+3Try0NRleUO6pDm0KZx3zFAqqjby2IwVXhxeffsNUFocSlCCPRrKygJnjhjAY9NXsL5G9xyXvJXaFk49uB99u3bg9rGLWLq2tDiUoAQl2EPhzYcPZF1tPf+duRIomZXaGtqXl/GOo4fw4JRlVNbUt+p09N4IpcWhBCXYw+HUg/rRsV0Zj85YAZTMSrsC3n3MUOoatMcz4BV+o9v2QonKSlCCPRw6dyjn1IP6FcJnlKZtW8NRw3pygG9+LGkOJShBCfZYOPOwgYDukNjTItjujRBC4NxjdCnl4J6vzphkpdhKJSjBKwDOPGwA3FbSGnYlfPK0/Tmgf1cO7N9124n3QihRWglK8AqAgT06cfSwnqXFYRdClw7tePtRQ/bYS7/aGkqaQwlK8AqBz77xIMYvrNjdzSjBqwRKi0MJSvAKgZFHDGrTO6tLUIIilHTUEpSgBCUowWZQWhxKUIISlKAEm0FpcShBCUpQghJsBqXFoQQlKEEJSrAZlBaHEpSgBCUowWZQWhxKUIISlKAEm0FpcShBCUpQghJsBqXFoQQlKEEJSrAZhBjj7m7DdkEIYQXw0nZm7wesbMPnXVHHq6Wte0o79oa27int2Bvauie14+XCvjHG/ttMFWN81X2AF9ryeVfU8Wpp657Sjr2hrXtKO/aGtu5J7WirT8msVIISlKAEJdgMSotDCUpQghKUYDN4tS4O17bx866o49XS1j2lHXtDW/eUduwNbd2T2tEm8IrdkC5BCUpQghK0HbxaNYcSlKAEJSjBVqC0OJSgBCUoQQk2g9LiUIISlKAEJdgMSjfBbSeEEE4EYozx+RDC4cBIYBo6nLLZ+xjjPc3y/yTG+K0dbMNZMcYHdyD/COBdwFAgAouBO2OMU0MI/WKMK3dWW1uo++YY4wVb+O/YGOOYbeTvG2Ncta28IYTeQH2Mcd0ON/plQBF/Lfy31TY1w32L/dwJ7WsfY9wYQngDsCzGOD2E8DbgMGAqsK7w/iLgNcCDwFxeJq1vpQ1bo78BMcbl29GvbsAhwJwYY6vuVE11hRAGAb1df3/gNGB6jHGy0w0stjXGuKwVZb8TeCDGWLOVNEfFGCcUfpcBxBgbQwh9gdcDT8QYV28pT1vAq2pDOoTwFuAK4JwY4zy/GwTcAkwBvuvv5WiC/C/wGHA88E3gY8DFwMHAOWhxDcBa4FHg40gbWw50B3ojz4KPodPcL7gpBwNvcL1vAtYDf0ZEcAbQ6PRTgVExxkcLffhujPEHIYSTgH/GGPcJIRwG/BdYDTzgsoejCfxx4APAe4CDXPYq4DngdGAjUAH0RwyhJ9ARqAO6AE8DRwM3uz83Ac8CA4F3A/sAxwENwAaXtxi4I8Z4n9t8J3AUkIj5IOBAYBHQ3mXf73o/Zdy+C7gMOMZp5iHGNA74JFDuvlwCjEFM7edAL+Ai4LfoJClApb8fBLq5rZcYVwPQZK8CqtF4TgcmARNijNe4D+2BbwDnAvOBzwG/Ad4CdAY6ALXArYhJdgTqgQ/GGB8OIQwB7gaOdB3rEf2MRQxnETDDOF3tdgbjswG41HhdB/zR/9+LGM8/3cbnYown+vl7wBKXd6TH8hlEU+93+6oQg28w/r8M/Mz4K0c0PBY41jisc72PACe5zOgxaY/mwLuAf8cYf2ycTUZ0OAn4kXF7B6Lzoc77ELACGOK6/2483w3cFWO8r9mCOdJjeyKijxnACYge+vv3oYgeuwFPAE+5znnAL4DRwH+Aq0wX/wL+H4JKf55wHf8APormxiqPXW9gAZoLZzjfXI/RHa7nFmCE23Gvcf1gjPGeEMIhxvlwxDMaPV6jgbP9+0/AlxBddQK+EWP8tXEwJsZ4LG0Ju+Kk3e76IGaUPss9SPVowq0CzkPEv9ID0YiIfV3hOX0anW8tmkyd0eRoAHq4vkmuq4vTV6GJXoUI6mPAw8DzaMDXICK61b/nu02j0SQ6C02aicCdiMCq/L3O/ekDLAVqgGv8vRz4BJp4tYiZDvPznWhyNLgt+7jeZ4DXkZn8BW5zrd9NNp5uN+7GAd9Gk6EWuA0taN9w3Q8Co9y+8S7zjYhp17r9k4zbhf6/Ek3sjQVcv8v9ux842emWoEkTEcMa7bxV/t2AJEeAF/3+6653LvBBv1thvExyuV9y/pX+rxb4q8v5FWJyjwKznX8C8EWP483A28i09SWPxUanS7isdV1VwPlOswAt6PVI8gbRRa3xXeF23e70i9Ei+FW0oB1YoPc+/lQBNyBGs844Gefnh51+ATATCQn1LmuC66hx/RHRXxe3oRLRUIU/n3Qf/4EWkekew2P9Prq/aVwaXU80Ti/y8zKPTZp3jf7UIrpaChzjdi9G9HCh/38W2NfPowtpKtFCmurdQNM5XZzXjc7T1+mq0eLd27j5G3AqEqoWGQfznPcq47XCba1xnlTvfPez0ulHIfq6Cc2/VR6Lq51nBVqkG4BT3Z93uk3n+ffYNuefu5uBt/HicCeSyEegiX2gB2EjYjCTPTCrgBtNwBuRVHwnYuwLnW4/593XhPykCSmSJY0Gfyr9vh5JXxeZcGtMQGcDc/x/B7e1Dpjo58pCuZHMsBNBLyFLlHNMgHWFcsYVcLCx0NYq4PnC+1l+HpOIzWWvBv6KmOY4E/dSJHUmc8JEpFnNBNY5bwOZAde5rbV+bkQTKDHIOYjhTEba2YVAlcuZC2ws9GFa6pPxMMPP7y/0bxxa6OcmXBQYZip3rPH/b7ch9XkGsKGQZhrS7tLCN814SfW2d986FPA3sYD/6X6+y2P+gHE3GdHQ5EL6MYgZPOm+jPH7KqS5pP5XGd9TCs9Fmkv0kZhqNC7mFMbgbETr9cB9iLZPcP/rPe4jEIOf6bY2AIe4HdWuv73Tj/f7iBa/0R7jdX6uc7qBSAuqBuYW+vSCn7/jPEcimpuO6G2VcfO4xy3RXx1wdAFPCZc1ZDqp8lgG42a12/FV17XQZbUznjYUaGY8UFP43Vh4nkjWlBrIc+guJCQkXjPP+JuOaPB/PdYTkYbSACwo0ECR/uYBvzZen2pGyy86/5i25p979YZ0jPGdSF28FugaY5xNluTegqTlcmBpjPFjyCyxCqmDD6HJ1xfogRjkxhjjS2jwbkJE2wAcHGPsgQZ2QuF5SZRd+e+IIZyD1MOrkCpZFWOsc3NXuS1gydLl3IeIqCswy2UORlLkrBjjAYjw14YQTnAZ7QFCCAeRJevH/b7G6aqAfUMI9yL1/uAQwjQkdf4DScIHIlW6EVgdYzwMMeRGxNjPQZJVe7d7DjAvxrg/moCzkP33YDTZ34wYVT2alB3RhH4b8FqgYwhhOJYkQwjvs/31KuDAEMKZxnd328pfA/wTMYDXAIPdroYQwm9sykkaE8bNcjS5I9nslNqP34cY40w/L0X00x4JBsQY08L8JduhK4BeIYTve1xDCGGo2zbHONgH0VKjv2e4vgq/W+DfR4YQ3m8c9XU/+yJTxTnIbDLHzyCGeQxayBqB/WKMZWjcv45MeJORQPOQ65uIpNRKtCglDbcn0kp7IXNMf+e7IoRwKZo7j7v/G1wfLn9+jPEMJDgsB/4PaVgr0Xz6otMGf/8YOML0t4/7+yBirpe4TS8hU9MvjddByNRYDjwcQvgKmk8HhRAmOs2QEEJntFj1ieKqj6EF4BbjZYH7mDSQjmj+XGl8P4zo72MhhE5AXQjhiRDC+cZLR6ThR8TYiTG+w7i91mWvM76qgFM8XiPch4Pd368YF2mOJaiNMV7scfodQAih3P17I9KmX0Nbw+6W7nfFB+iKJtSTSGI4DRju/x6nqWRwvAfhB0hqWYLMQE8BC52mo79Hokl1on8PAY4slPszP/crvL8X2Xb/7Dq6+f17EBObgcwpScLvD/zcz58HbvBzT7RAzUYMIplYliGCnYUm6f9DqnAya8xx+rcjJrkAMYlxSKIe4vZNcjt+4LY+ArzWdf8vWmD/gCZBRBLlDJc11XV/ooDXLxbyridL6B8r9HOx8bYcaWq3egzmokmWTB0LjMdPA+2dfxRZUznDbWkwTi5zmouB//Hz99CErHDbV/h7nds11e/uRFrljYhpdEMT/DGk+k8jM/g1SFK8yfi7G+2FdHW/ImIYk4H3ux1HIs3iGmTuqjDe6xFzvNd1HI8W1P+6X+08Bg0uZzii7yRRX1PAXzI1LkdmsXMK43I6Mtf1QmaebyFb/H+dviMSEr7qMeveAq1/kqzl/BUJLglnF6L5dCnZrPsAErbe7ro/5vpORvT5DFqUxxbaOdo4H43o4Rdoobja+NwX7YOMd9lp8VrnNiXb/veN38XAOzzm1R6vicb3p9CCfBMSBKe63Wnf5b+I3r6ITFpTjNe1HqtatL+4EHij298O7WE0GieXIi2gAs3VUU53FnCxn49GgidoPnzYz+0xHbfl51WzIW1p4kjg2BjjqGb/DY0xLmohz2Bk57wnhHA08LrmeQtpP4fs063ykGghf1fERBrjFrxctpCvO3AAIr6F0R4UIYR+wJoYY8M28h+KGF4dUvnXF/7rln6HEIYhD5ul/v0axPgmoYk0G2kgwe1Y2qye4UBljLEihHAW0tweizHe1SxdQAyosvCuL5Lmt4qXlvK+HLBzwkGImW7Wh63k64o0061612yLhpql3YTvFnD/+hjjk82ft1LWiWgPZkveU5t5h6W2An/bFk0373+RbpqlG4wEszlI662wV9AwxHznokVnAVqQ5rVUTrMyy5GwVtXsfU+gXWzZo604rzujPZtJLaTrgxbzlubXgEJ/B7m9XdAC0w5pi4e0wGu2OV5Ol0zWMca4Znd43e3VrqwhhA7IFBRjjNUhhAHAKSGEY8lq3NWxqRvZ54D7o0xQI2OMN/qviKQPQggXF6o5CUnm3wR+F0JYjLSMfyAJqb/LKrZrkxtaCGFijPFIxGDPQKaESYjxHoU8jW5HkvBK4PrY1C2uE5KI6pC0lFwEhwLPhhBeF+3uGkIYGbMH0eFu4z4uYxYwzBN9ofvw/RDCdONvYQjhjBDC/yBJ6T4kATUiLSaZwPYFvhJCaEAbdzOR2eNTQOcQwreR2eBp4HIzrvFI4loMfAFYHEK4Hmkr0e+/5XZ3Bq50mWsRo1kPXBljnIs9k0IIP8Wb+bHg7htC+DWS4KbEGKeFEGbEGA8xMzndeDsFWBhCWI6kymR+6O16A2Ze5M3mi0xXdch8cxhiFNfFLIHtBwwOIbweONPlXo8k0e5IYr4kxrjG+L4qhLAISaEzQwjvQ4zzXSGEPxvv0e28o0ADE2KM96Y+xxifCyHsb5MJbvf7kIR7F3BHCOETwA+RyWMV8FZE7ytDCJVIg5gNvDfGmExiqfwNrjfB1BDCwhjj64JcS0ciOhuAtPCDgPeFEN6N6KafcdULaQe/QIx4vU1sgxAt9ELaxUHI8+lzUS7WmxaG0NQ19/kQwkPIDfTuQvteC3TyPOkHnBhCeDPSRPfx2PzIY9weOVi8AHw8hPAMov/nQgjHIKFlKdJ0CCHcYJzWA4+GEPZxf4YireTqQltvBw5HGvsvkfn5V0jj64z3Ek3zAEs8r24Afhxl3ms7aGvVZHd+ENPp7ee/IYnwWWQKqkATeyNws9O8H2/oogmyATGiK5GKXeHnOg/gd5GK/1NkUljndOMRcdSTN6a+juyU5yGGdh5inCtc9yKXe5nLqkPMrdrlLiObjpJJ5SHE1Ovcr7n+nokWlHmpfNdRgcwkabO9GjG2pIZ/2Dha5nIbyV5Cd7r8e9yf5Bk0x3mqEbOuRqaVJAm+aBxfYZxudP+mIXfQWsQgJ6NJ9zNkEpns+me6rMfch4dcxl2uq8ZlNQI/dZqL3L7LXOclfp+8ZNIGebXHr9q/r0H7BMk7q86/RyHzYgVaoJPJ4m5kyqkDrkPeLMlD5UnE/K9w3TeTPZMakYnmGmQ6qkOMoZ5snvmX0yXTZvJ+qzb+nnC+DyDmeTfZM2gxoqdyl3U92X05usw6t2emy0z7Dld6HBe4v7WInv9Cdo74F2JiF/uzuPBZTd4YT3VchxaWtFm9CjHTK4zb5JX0X+Nlg8f0QbJXWZXb9XSh7Hq02PwbeUf9xW2dhOgkGnf1wJ+Mixmu60ZER3VuS4PHNpW70n37lctZ5TQJBw3uy1rj7F9o3mx0n+ciGliNBMfXkp001hXKioUyk2fgErSv8jSaS+VuxxJkXfgRcG2b88/dzcDbeHGYVHiuAQb5eSJ5Ek4lT8JqsjtfvQftt54oiWgWeBJUOE+jy5ljou7s3xOQBP5vMkN6hGzjTN91Jq56stdPsoH2NbFMLrR1CWIoiVmM8oRYgBh4tdPcWZggi9yeZBefTfZgWeK2J0+cMWTvnpmeOGNczlS0IK7wZ40nxI/Im60znXe9J8p30USb7/QNhfRpkiRvr9jsud5lzfX4nef+JY+UKchUBZr0a9DZg6LXWPE5efIMRMw/4b+G7IZcizYE0xgmvDzr//ojabMWuK1AWw/4ucplX0TelBzluk5wmrRP8Rv/P7ZQX6XfN6eB6cD+fk5tmk72+HnB7eiNBIcGj80oP//HY3G7+7wO0fFlZO+yPyMX5nmIxpI774WuYxzZyye6jQ8iehqPNk+Xu+wFLme2x62f29ELacRF76DkPnu2x7Ae7e80Im0ruYZXuH0vuR0VZK/AVW7r40j7iEB1AU+1bsd68nxa6zJGIFqaRnbvXU8WANf63Vo0X65yvnq391Y0x75gnN3hci5GtD/dz//1eE9DczN5Q84ie1LWoJvaME4nFnlY4XlaW/PPvdpbCagMIRzh5wakGoNUxdT3vmhQHkYDtwBtVB2NJvpH0ISbjSbTqcgWezTZ1PHlQh2d/FwGVMQYz0OT6lfIDHAAmkA/Q4S0nuyel0xdNQBR9tK0KIEm49IY476IGV6FiPo1SHr8FWIItX7+EZok8xBzm4om8GIyM2lEew7PuY6OZI+SFcD6qMM2z/l9V8TAlqGJsSjG+G23tbaQ95hC+nuR+aADYhz7kg8R1pC9vWr93xFuV7LhT0CT8VL3J+G4E9nDKy2K6frDmS5zPNmD7AWXeQsyHyT/+cVIAn8HmuTpJGpjoT/tPCYromz3Ve4j7sNhIYTjnL4qxvgHxFCme4w6IkEBNKbzkXdVO+MIRDOL3Yf2LittdldFmc2qgB72kloFdPFzd2RCXYN8++sQjSYh5E2u50OIDhqQZ9q+/l7pfo9E9NDN4xXQhm7CR0WMcQSih5uRoNXB/UtzpgLNpXVovlyKTJBBKIwTgPoQwndCCKcg2q2NMT6A5t8c7KWDNING8vmikWQBYjVaiI9Em9rVyJz3FvJhT5DQ9pLb0cF19/X4rEYeRp2dfyPwNWTuKTfOFiKTb/IYusT5eiNT6lHIZPYh9/ktHtfubkdvPz9E1rKPdtv6It5zjcufBdwZQvg0WkirQwhvCyH812OU9tbannfvbum+LT8etPGIiJ9AAz/Vg/MIkqoqkf0OrPIX8v8VbaAl98t5LdRxH2I4yxDzmY1sguuBLznNach+2x0RVTqTMA8R3lzy4Znk013vNq4EzixIbsm3/N/IP/wUNJlG+/1o4KVC+5YiW/rNZM+WYUiCTKalfyNm9QAi7uQtcTr5gNfN7ttDxsdyNPnmoAX0ErSYzECL5hOIWb8LLUyrjKM/up457s8k9+N6pEYv82eacfMgYphPkX32o9u+EfiX2zofb6q7T0mjK5oA6pCLZRmy76f9hAvdt2vQPkwtYjqRbHqIznO9+1vhNLPJmk61xy2NV5U/E/3+o37/If9eZhxF97Oe7J2V+nmHx2A18D/IrDfjtfs4AAAgAElEQVTNn7VOU2E81iLaewExpcpCv4/3WDyFaG2O8T7V6S5ETOw4j+Fkt+UWsml2IvATPx+K9tNATP90xEiTx9lCJADdjzzDKjwOaX4sd7qX3O/PuKy/OM8d5GgFs5GAsBgJRPWIVuYB7wUOdd6fIVPO82RtOQkUSVtKZpy5xsEUt/s/xufCZvP704V65rgtzyAhLaU5zuOYPNxWAn/2f1+n6XxcgOjvZx7XJehMQ3IpHue2r0Bzd63b/RxZo+gLvKet+ede761kb4azkfdAdySVrUYTaR7afF7jtEcj19Inm5XRHvu6xxg/vI062qGJsQhtjM1slnYA8LaYN7qbl3UY8mUuQ5P8+Rhjo/97L5LcHgoh9EJM+HC0AF4eY1zn/PvHFuLbNPeUCIql8/oY47fsmXEA9iLZRt8eR37qZyAXviqyWWs/t2khsNJt7Yo2O49HLrvvQovnP1F4gg8h5n4VWiDTuYVaJMEuijEusWfWIcg9dy5iAo9EORuUofGpdbuHxhgXhRC6AAOjpO4iLnohqbYxymulN5L4hiIzRj+yG+hCxLDWI3PRa9Fi922nPQzR1QvAYdHhTkII+5HPcnTE517sSfZGtEC3R4t1z9RP522HNvFXIwYyBIVXmQ9cFWPc4PJPQ8zoEMSwH0M03aKHUdDZj18A+8QY32AptFsseMH43eeQZ9WHC+8/FGP862aFNi3/aKSVDYsxjgohvBXRQzKR3UPeoG40bmfFGF8o9Pt9iIH/E4V/OQuNdcqbzpmc3Hw+hhBeR16o+6K9iPko1Eyj5/L7Y4x/MQ0cFmN82nRyOmLAo1xWirnUBbnAnoQEytto5uHkcv+EtMk/AX+IMS7zZvKAqPNRhBAGxuzx1GpvyN0Be/3i0BxCC8GzQiFYF2IKRwNTY4xTCvl6Ik+O2UhNPQJpEk2CYaGzDeeEHIvnNDS51yOG8lNkwjgPSX8/QCrtMLdpVpSXRjdkC52DTrEOQ2EP5hX68E7gmtgsAFho6ja6H2LK02KMk4IOxh2NmPl5iFEPcNZKNIn/guz600IIH0YMfBI613BMbCEoXmga+6YJjhFj/DnyAqlAzL8H0oxuApbHpsHy2seCJ4YZd0900KoxyAsted6sKozjGSgmz3rEqBcjieuNiEl0By4Hzo4x3tms/QkvTca9pf40x7fTvAHZhJ8LIZyKNvGnIjvzwcb3iphEbbX1eGS2u6aIR+Nnk3tnzO7E/RBD/QISPm5Am52nuK6fFASdFl0fQwgHkMOeXI4cNV6HFrAJSNB4Cbg1xrg6yGX532hePI4W5bNc39PoYGNq60wcCyxsIVhjCKFPcc4U3hdp9q+uczHaX0l0lebgHKQJjEAuuqtbKjeE8LEkhIUQ2sUY6/3crZg3tQst8IOR0LgOOVMcgzSqD5M3nzfDeUv4tvfah5F2m1yPU7DBo9CivinYYCHfxWjOPWC8R2Rmu8ptnAb8IG7DzXeHoa1Vk935Qa6o6flUpKLWIOb+uJG8AalvoxFTWYi8K9Yi+18FOYxAMqfMR0xnmf+7CjHqqUg6BJlhVqCJtsFlr3G5k8ibgA1uUwM5ptDjTl9B9sa5wnVtcD2PO/8aNKFnkeMOzXeeT6JJ+2dkJvgLMhlch4j/DmTvPZ28mZc2559EDOhFtCk3xvkXogNRyX0xHdKabXxMcfvGkjfNE45nOc2nEWO8hLyheK3rWej6H0MeIMnWnDw67jVuksfQRNef9lpSbKaJyORXaXz8lewVU40YQDqAt9713OO2PIUWsmPIweoeQjSSQjo8UKCtm50vbfJPRiabdHAveTQls9Iocoyl6Lp/iPY8Ko2n5PVS43atJB/C+hsygT3nd08h5pE83lJcnw3O/yjwE7crxRab77zPkTWxl5BmVGP8Ja+5+51/ict82OObTB4b0MJym/HzKKLd/5Cl/OQZWInm0NnkOFDfd90z0AZ58iRLMY/qPcYNZHpa5nYs8Weux/Qk43i1x/VMFDSv3uWfgxaXh932Dzp9CjmSTIPJoSKZKVMsqTpEl6eheb+e7KGWzIQ3O02aw8k7bLnH9hKnX+p2VJM96u5xvqfdjlnI/fVh538D0vz+1Ob8c3cz8DZeHMYUnlchSWtfxIBu9/tqsvdHNdlzZK3TlXmyPIe8RZLd8hE0KRvRREsMvg6ZAKqBU1zWOE+OQN6MHGZiXoGkoUo0eZNHyiRkvljtydAXTdj1yJvlPrRYpFADFUjlTnFkDnJba9yGrq7728hzYgWSWi5GTGWN000me00le/Zol7WePGkXoYifNc5zHtmcdh6aVKvJwfySF1MjOQ7PaP+uMS4aEBO4BG3kLiSfml2JzBONKLIlNPXWqUVSP+SIqqkP69HYr0IMr8Z9qCYz6q8jJp4Yw3gyIz7ZZf0LSdtfJ7t0diSHCkmBGJ9x+hrjYL7rWoRoYwM6jAlZSLiRvBhc4j7fbvyl09Lnuq41rrcWLcof9P/VSEt6h9M9ZPwloeQI43QxorkG8h7CGKTF4LyLEO3XkgP11bhdH3Sb5yGaTi6gyZNoMdnZ4nYkZVc6/xfI4UvSSeVU1jyysFDucZyKPHka0RxK82Naoa115D2JREtpUUqnm6vI9PpjmrrgJq+ijWhz+wCnn1uo4wT3dSOZ5pLr7r7kheUxslt3asMsxNTXGw/T0CLyNrclxRu7xHkHFeg4ea9tOjHudkxoa/65t3srFaFbjPHjUba/FJ4BNKgptk492TulA2KSSXJpH2W3fgkN5KdjjKcg5js8xtgJSQ7JR74jmowJYtTIrkcb0gsRAXWN2peYg+yYc9FEKIsxjnOZq5BU3x1JPz2Q/bMyxng52gtYGXXALfmTp0NRjba/b3A/u7icSpczCE3EYPNJfz8f5762R5LKTETkS5FXzNAY423u52DEkLojD6J3uOz2Mcanja8BQWHGP20c34km7lqkbe2HJsMFyMy1P2IwfzT+ukSZezYiezXGS5fC2CVvtHXIVAc5ftbziEkvQhNzEmK8U4y/L8YYX48mbpIGg9tydQhhDoqQeUmM8eduxxgkJLQnu8rSrE1LY4zDjbtuztORbBZLkTxPcbvmuc5hwJuNv0bk+nk7ebP6Cbe7OsZ4S2pvjPHRqFPn5Wgj+RnyOZZb0ULRy5+IzB4g4SHRfq371NHjs7/fV6E4X7e4TTWm6XP9f/IkqvAYlMUYz40xPmW8N8YY/y/GmHz+r0L0FJFmd6D7sSTqZH89cqKY7fedPT+SEAait3mI5voj5loMF/NMagvS5joiTbm785f5uc79+y5awMrcrpRmFqK7Mo8jyNy01DzlfYhnpJAqS9BC3BBjPCjGmDbpF6DzVAH4bYzxUjRnlyOnlU5kr7Z6/9fD/eoAYiSFtrUd7C6pfld8PBgXowBXa9FBofPJMXrmI0Jbg2z/VWjSP4OIZSHaEFvm/BcgVflOtPlXjn2pXd+NSP27CU34Ra7vfsQUznddycNmDNYwEPHVIG+aJP2/HknHzyHbbjIzne//G/1ci/YecN1rkBS8jryhOtZ1jUcTYDRibCkWTKPbu8Hfo5EUNIvsd78YMeRqxOS/ZpwtRzb5B9yu85HNvxKZtJKpZDTZNDbP/Z9MDq/9Allqegi54h7nsdjo97eiiX8+OWTzY2Tz0/Pu70pkElvtNj/j/7+DFuI3uu4UQyuZzyqBr7qum9FifD7aJ1rj77vJ4c+T+azGdd9J1ipSLKsL0GK9HG1WJi+iG4y/D6HFIB06OwXR5kTjuKaA46uNj7X+riYH1JuKmP0QRMfpHMZTLu/Nxksj+cxKMv1F5FX2O8TYJjpP8ohKGsvwAp1VIaFhLmJiaawWksNTp9hX59J0riwmx4H6N5L870DzZhnZxDgTeZBVexzTIcUqsgdiikP2IllDHUsOt36n2/N/7sd4NLeSB9NEf6fYae/0f7XIBfif5DlZRQ4t34i814agOEtr0Vyp8LjPoalX00iXea/H4VpkAUhRoue6nm8XcJw04B+RPfAORKe+25R/7tUb0iGEy5q9mo6YwuFIrX4YTay70Gr+XmS+mY6I6wHEGE5FB6ceROao+13+fsAtMcbXbaH+dGnNpphDaBJ8FG2AT0US7GA0KfZHGkJH5xmCGPXlMca5Pq5/PVos3uT/piNp5i8xxseCYiXdjIg02SvHoY2tZIOehS7jmeZ2tkeL6D5o4twQY2woelqEEK4hRwUd5fKqENO9GC2UL6GJeAwi4CPQhPoJkoY/4TRfjbpt67VoH6N/jHGAQxisiDGO9wblLz1WS5BK/XX7p3/Z9R/k8VpMDiA4DE30eqQ9pNDPC43XtwPHxxgP8Abnh9DezFNOMyIqQm9LY5huSbuGpuEiTkQBBd+LJvi3kHni6EK5tyNaO9ttqEaLSfcY43Wuazh5MZ2DJNRapCH0QQLJS8isNR25QL4VLVjp4qRfInNkT+QeelsI4TS0EA1wuVUxxtcHxTX6hNtxaLM+3Rm10XowClPxZfve/yXmDfJg/PcCvhBj/FII4UJk5z8I0enPY4yLg+IP3RFjPCmEcCByxfy5yyl6KN2BFux0IVE663Ej2sQ9BtHvFGT3X4boaXbQrWtHxRh/FEL4dVRkU0IIPRANJq+zoz1Wq9BiuMJ9bogKW9IPLaSdEUMveuptRHNkgNs7GNH6NCTUvy+E8EdkhuqPPAcTvg5CZslfIr6SAoE+Hx0DzXOOKA+8Jp52oRADLoQQYhsz7716cWhLsNnlDHK44ZlooVjbLN3NMcYLwlauRNyBNoxIDH478gaaugy+ye2biVwlk/vsGcjTJ8VT2u7Ads3qTzGNdihY3hbK7oMDlrUi7TtjM8+lPQlCK67L3JJn0HbUdRai6e/hmGR+/zVkry9DzLh421lzmn4Uxa3a7gBxYQevvy2U02IAwG3k6RdjXGmPsxNRlIUHWki3VZy35CLs9yPQwjIBLarHI4FjCjo/sx7hsgcSEgaihbYDO4lvtBb2+sUh6GrQcxEBD0MSWAojMRPFtDnL776PVMwU9GoRUq0D8jRZGkI4Hpkx0uZy8vtfg7w+5pFPBs9A6usSpBXUocG9zs37AIp6ebml2GR3HYCkxvVI/ZyGiOe6GOMs9ysgieeziLnfhaTCMrdjGiLuGxBxTULEuAHZxAe5b+VIM1qMpLNvIzfGz1jzegvyoPgwks6nIgn6ezHGJ5u5Rt6AzG4DkXQ3xv0/zP1N1yGm/YEq/77KY9MBTYpGpB08Tg4fMY+mobuPdHuOQhpW8mYqQ9pK2l8Z4zalE7CnIZfcr7ueAxEzfC/yEPmF07+W7PHTnhwOPcXTOdF9HoPo4e3k4Gq/iLqfOSBTzS88RjeiCT8PSZXDnP4jUe7PfZz2a27vo+7/4ciscLT7twjZp1Po848gbfGdSAt4EHt8Rbl59gd+j/ZY1iHz3lhyvJ8En/R3DfCPGOOng07mHmucnI600JuMs77oJH4y853gca00jpI5rDeiv9+6juRG+xu3aSGytW9AtDuefIvcT5GmVo28ocYjjf5w4+8+4IwY448AQgg3Iffhh8kBMUcjL6j5Tn9ojPEGa4V/QXOrF6KjNYhH1BunJxsnL/r7aHJIkJs9DnchTe7jhb7dbfx0QntH86x9f4p8U1w10rxPROPd2W0+knyCvZoc2ucaRNOb+AZtCW1tt9qdH+T+eQ/ZTnwDIpJFaBH4LFJZH0T+y8nz4V3INp2Czq1CDBNEaBsRUz0EEfSj/m8RGvTkeXItWhiqge86zRuBJ/08EBFaH0TMa5H/9RUu9/NkF8aHEZE8iCb6ZLfjXvJEqiafBk2bdo3Im+LL5ECAlfhKRbKHza/R5KlCBJ68alKsqBRqY7rrW45MHAuQx8Ulxt9taEJvRAvEcKddg5jRXWTvmdmI2VyOFvB6pGp/hHxt6Mlu8xN+Tt5R+7q+2YhJLDV+kunlKTSBU3ygr5Dve7jB5adTyMld+FJED08hRvuccfIpJOmtQsw+eY2NJm98TkBS4O+cvy8y6a1Bpra7PT7fcVsnI3Pci67/JHJAuUXkhTNtzG4k29jXIxrYgBjlCrT41JPt1tXkazXHeNx+TvY4Szbz5f5/KXn/oRiorobsJZMC4L2EvbD8/hHyvQUL3eeu5CtT15A3ib+AaCV55z1AdiVOV7qmg5Cr3L7V5ACPX0FzYiq6inUBPtVPPr3/mMtpQHOpknwN7DiX2YfsBn22+7zcfZjovIsRPTagfY8LXG5y8Z2AaPwK4/RW922S8ZBCtDzicpOreQrHvQHRUHILr3Zf/uv0C8ieg2eR43d1wHsrbco/dzcDb+PFYUbheULhOYVUGE32005ulSlYVwra1jx4W/K5Txf+VAMv+vl5JF0+aKKYaKKuJh99n0AO7hfJDCF5IKQDPinERlqwLiRL3SvIvuxzyExkIPkqwrmeCMULUxqRFNydvEgkH+yzCxNjDWIW9eQQICmgXPGqyRTqYyqaZPXkKyWLAeVeRMzpETThxrndvdyG3xTquJR8LiBdmTmm8FxDdj2uIgfhm0kOGDiO7Oo4ATGTJ932OiQ1p2tF5/lzj3HRWMDFhOb483dHsotwd/JZloTLFF2zSDdprNOCkhaX9D6FH69HjHQdvlbTuAweu1Xuz1/JF9TMMY5SaJXDXM5kj8tGtJeCx7YaaQEf8e+HyBvBc9AC+DiS7NeRN3lTuJODyS7B0xCtpHGfXcBNlf/v7roajKMb3ee3uR0zyXdZN5JDfxTxl96vQIvF3Wgju8b1TCGfM7gMLQAb3YdJ5M3iVGYSDpLTQBKq+iLHiCqkpSV6T0LTQqTdLnE7VpDdyu93HclRIM319JzO2ZSTz4i81X1PZ5+KfGp6wqV/p4CB++KraEuLw/YvDhPIt7S9SL6IfQGZkYxHNlLIXi5lSGKc4ucbEBN8E1KnazwJXjShfd5ENQ5NqmGIYdYgKfBGE9FosmnpURPvlzzYj5tgBrpNi/w8j+x/PpPMGMeS/bDvQxP0EbdzETnu0RxkL34PTeNG3YsYSx/3NUk3Z3gi/Il8eO8OE/aHCsx6HJKuV/vzQadJ9+JOQpO1MzI9zCObfCrQSWOMp+uRZJaYyoXkkOVlHpcl6PDder8/ADG0lUg7me52n0R2uz0JMbG/u8zJznOPx22+8fMi0gLTNaSzXO8kxNxSsLUGMj0VPW/mOG0f9++/5CtR06HIdYXnqeRFbZL7ltq30LhY7uc5wKpCXfch+jjO47Mc0dN4mp7rWYk2dk8wXlLdL2DaL9SfyprjcUoxyWaSrx9NEXUnkIWBBUibqXQdoxEjnO9xX4ZCgoDoKp0X+KnL/LT/m0b2ylkNPF2gs0mFNAuM40Trybtsvp+ryAvZVKe/nqylXO82zHD6Crfxa2Rte75xmu507ka+M/rLZM1tnutoT9N5cAdaaNJ98+nsSlqkq53mFtd/r/OtJR8gHO3/k4Bwr9tegcZ/FoUDvqXFYfsWh2PJ1/i9YESnU6zfcJpfkiXX/UzsKzwQSRq8FZmmbkVMeQViAL9HjHgOOZBXcsXsZiJbhCbqOqeZi07DnoxU7OTO15scNng9+bBYJbJJg8Jx3FNg7t0Kff0iYmJJta5EEtRf0eL0N/d/oNMPIh9u+luhnK7+7xwyk53stgwuLLrpINCZaLJNdT23k68ovQVNtsVkd8hFyEzzVuf/OWKkP3Kf07WpFzp9Cg1e7TZMQgv0s+SIpQ1oMv4UTZ6V/tyLpPB3uMyRZOaRNK457sN09+G95BPxyaSTDsZd7Hqn4zDdzvMScJHL/RF5AXmCvOi+F8XbAe2xTCu8/1wL7XvAeF1aHGsKboxIG6omn/Cf6Pd90YL3PXKo9CQZrwW+4nT90Z3QoD2F35ADxpUjGrjfePoUoofjyTRehuj408iUNhvR2y9db3KRXuf3Hyzg+VTk7jsL0er5LeDvOfJ9GH8G/l54HunnS8luzuPJYd7/A5zr54lkre/ewvPXPMajEM3/i3y9axIYuyCPozQ/xiKB7s+u4/QW5sFM43sWosNPooXiAOPpA0jw+yZyr/0NsjqsR7TxqNN9F3lJnWzcfcbP5buCf+71G9JAusYvuZNWxWaxc7aQpy9s+2rKFvJ1R4tKJ6RBdENSxhq08VT07HgubmEAwhYC4bWi/q5o83t4bCH4XiHdptvoWlHmsUh7meHfPdAkrNpC+n4Urij17/ejyfOkn09AE+na6DhKYcvXtW7XWOwIFGIcRYBi3c3oqdXXiRbyt/Za0RavsExujC5nIBIs5iAmuT40uzrTzg6vQftIk6JiZg0k02IdMpVEpI0uK9Q1EOgbY5zimEQnIKFrMvk+jWIMr6kxxsmFelu8qrNQ/iZa2VLcpdZCMzfQTc/+r+gG2iKdNSvrzcgduHmMtUPQYnwwvtcl1dEs/1C0OG52VW9o+VrWgMxv7diKp10I4XMxxqu31vadBa+KxSFBCOF0tEn0HxT//bVIZZyFNnxmo0F/E5oojyPGvulMgMtp0c0thHAukj6WIzXwbCQNHEn2j16EpPP+SFP5PpL+piGb637OewSSJBchKasXkpI+gDZvZyLJoweapCciptuAVN3VaKN4CNpgn4aCoiUX1QZE5DcgCf+dSLo5nHxb2KNI6roNeahEpIHdhxhET7T5dziSaBrc9v9D0uQlTneAcdybHIhvLNqc74788V/0hB6FTg/Xkze/K9zHicij6CYk6T3u/u/nMe2BJLhHkaZ0LhrvEe7D3cgEeC5iquXG7x2I0e/nvE8geliJNIXXuP7XuZ/lxudQNNa3ImFgpN/3cboJSFuIxvnJSMMbi7S1hX6/6frWBD7z8JYY4x/MOK5DgsYxyFz0gsfrOrToHoT8/f9hj7o0jnNjjE8ERQM+zcV/HXnErUL03olsKu2OJP0KZG7qjMxb3cga4HTjuRuis58jWtyI6HqN8fUP4/Z1yEY+udC/LyHNuQPaZP6mx2oj0qwfQc4FKSba1Nj0qs9UziDkcVSH5tJIZEKdirzojkHzMHnabYpY6/MVn0D0cBqi+XS6+VREX6e4z5/xuL3eOJ9u3P3SeJmFPJkWxRgfDiF8hRxu5zZEz/u5r8eiuXqR600hR45HprHkfTfL+Q5x2/6KtJCfAMQYf90cHzsVdoV6srs+6H7o9Hw92dxSh4g/baJORJ4I6RKXa8heLM0DY12EGMp9yET0GFkz2OBy9yfHiPkTGvhkU73E+aYh6auWbAtNp7aT+WsF+WTqo0hFH4UY2TKnu5HsMXM/jlKKJudqxKAuQMzytwV8jEWT4Mdk80wKTjfRbUuHyerJG9TJs6KGfAp2XQGXs8jmsNlokqWTpY/iOEvI/JXs2E/6v8nkU8vpVqz/uk2PISaQQq0/6fGqRrbptEF6Pzmm0beRer7C/UxePoOQ+WCBn+eSrzxN8X6+WyjnRrLHzDLEZNLBu+Xu9xTnWUoOMLfB/bnS7U9eR4m2/otCY28WJye1z89/JcfbakQ08qT7s5y8nzUPLRoPkU8Rp32vjeSrXRch5ltHNjFdXsDtIue70e8+gRbEZX5/jetd6jRJkDoZeWPVIdp6nBzTbDpN90Q2okXnP4U+XUE+1f9cAVfJeeCXznt7oZwx7usL5BAYaQ6kuZxiHM1wuy503lv8/8mIfhf5eblx+BCi4Ui+hrcOOM35P2v8XIfm0BjkjXeX61tFFrRGO00agxqPZ3DdE43jx53+Q2ST3HcR7c9BdH4ZcFmb88/dzcDbeHEoEuN6tDIn180xSMKuJ9tqawrPYz1ozQNjjXe6HyL7aB1aAH5K9rA4kOyhcBE5LMcoE1hnsv9+Ch1R5Qm0qU2FNCmgXC15I7OKvFlXQ158Jrre5NmyHrlS3uU2pMvQN7qeO8nujb9GDHct8qKY7skx1/gYRA58NreAy9VIC3jJ75e4TacXcD8daQ4NBRwfSr6A6Kz07N8TyBvxs8gufTWI4bdzH9JmYXEcp5ADlt1d6OcG9+1O7KXm9NVuX+rPxAKOE+7Hue5ehTzlhTyz/H4D2Wkg3Tv8fbSQzEcTf5HxdDX5zuXklVZDvtO6kYKXi8ucAawttC+5Rb/X6UYW8HQn+frWpwpjl/o0l7x3NNFjndLP9ftnyfsjGwrvJyLmVm78zii8n+xykjBxJ7L1N5BpMWJbPr6n2s8p3tbvyPPgIrIn2TwyTd/pNMm5pK7Q1kUu92REu2kuriyUU10oZ22hnNH+L4XIqSOH4qhFd0OAFsvVaPFP+1y/I3tD9UKxwRrRGYix/swle2S15A2Z9k3mIbr4GfnMzpxdxT9fTYH3ymKML0TZYWuRSW0jGtCeTlNDDpqWAu81D4x1GCKW22OM30YD+ZEY4zedbhX5drj6qOsif4QGfTBSGReiDb4y8oG4iGzGGxFh1cd8TWit0ywjB9xqIAeaqycHD2xwX1PY6s5IWv6l6/sNUkuXIWJMV4tWRYUb6I8ONJ2F9kyS6y4xxqVRR/nTwpIIPLmgzjDeqskaBuSrQcehhWm/EMIfkG9+XVDc/QeBGEJ4k/Ok4GagBTn1tRqZRLq7P43uaw2+ypO8ePVwPxrczylu9w2ICdXapg4K25Gkuka/21jA62y8B+E9EGKMDc6zEejgU/NlxgfIjLAWebmUkx0TlpGjf3Y03r5EjtF0JtqgrEAB5VLoZxCj6B5C+LjfHxlCuAAdwqsAfhtCeLfLGhbz9a09PXYVwJAQwvmuY0QI4Qq0cIxFzgENwPqgQInfAvYNIdxjXPQPIdyAaHktciddCwwLuvtjMFoc1pBDxvwKaSYb/fwr42+u+7S8gPPkXJDGt9xzqB35ZHY5Yvq/8nimU8jJcQFEe/MRc057ZH8ga0DJq+h0JBRd5jH8gfHVAc2D+5DZ8FzjvAJ4i3HeHzHsdFalBtFYQJ53Fci8mnBwkPsRXU66Hvcf/n0WElKWGfcvoUX1KeQe3zCQj80AACAASURBVI9dCbtbum/LD5qkE8iHWob4/b1kb4R9EEOfjSTUSJb0/8nmgbHmILt1f8TAqtHEA23WDUeugDXYBRExia8jzWMq+XrCtBmYDq/d7fQv0jTgVpLukoSxjnzA6GZk+oqICOuQiSa5vD2P3AgHIQI8w2V9iOypcixi8lOQl0zywkmmnWo0MS8lX6063WX/0r9/Rr5XOqnxqX/1aN9jCGLMa5AJ4UG0P3ET+XxHwn8y1XzL9az2GM0nX9+5wf/9wW24wf35tsu41mUm75SD3KdpFO5mdh8rkKklutwkya9Hqv5/yKaaFYihXWZ8VBtfo50v0VbymT+HfN/DPPL5j3bIxJa0p+uBNxXocpnrTgEiE9O9x/iucPuuQSfZ0/7RPPctefpMJkvUpxrXo5AEn86vrEda1igU++uziIYmkeNAPYdo7gGkOf+NfKZnMjmc+0zy1bnpvoROxm0KOthI1hzuBmb7+ffkW/42OM+laGG9szAP1vnTADxbmDcJ919zn252m2rdtyoUqww0L+8iX2+bDqFNd5/uR3t8v0QM/GdoPyqZsVYg3vJd51lFDrhZjehyIqKTo/x/OkBa9Mo6DM3h+8hXhN6HTI7pPNURrvPxXcU/9+oN6RDCvoWfHdBdrnX2kHhDjPHffh6MJtThSMpohzaxNguM1az8LkhVfTYqNHLxv/cjSeCbsamnSwoy1hUxxZOQm9p88vWPRyDzxRNFzxZ7QBwWY3zIZaUrPI9GjHcZec+ieUCvbXrIOLbOagpeOEE3XJ3rOpYaT/ejTd7od+eRz4ZUIRPTQ0hKW4om9hLjfhBaGHqizeUfR3mq9EcboClc9HNoM/BwZHJ40J5gByKNZn6McULQVY9vdt9fiPJU6YoWvIGIua2LW/BOCbpW9XD/TDhLm/aJNurRxua+iGn1p+k1l8WrZs9DWum/il5DIYTDkda2At3iNaPQhibXt7bQvsPQRmtvxIyvN87eiha++5y2Pfka0+HAO43zU9Hp3xlFGrKH0amI2XdCZ0/qm9XfnOZ6I2k4Hczb1H/jawi6Hrf57YRNymn23yAU0uIx/34doq1OaIFOUWr/mcZmC7h6F9AjxvinQlvfguhjKNIiNo1Vs7xNPOLClq/h7YnM04cg7S9gpxW08IHofzkyK82PMT7nMoejPZmvxJ0YS6zNYHdL97vqgzxIehd+H4S8Gg5HGsAFKH7QeUhlDWhBOdZ5y5C5Bv//PDpctQ+asGuR9LEISRfH0PQC+nc773FIcpuJpIzTkatgatc7W2j7CKBP4feMraX3+wEtvOvn74FIc/ggmjjHul0L3e5ji3nI9uQeTrd/Ksvvu6EJ06eI1wLeR7ucfuik7AxkTpuI7lHYbKwK5R5LtvMf7PYdSdMzHn1aKOPYYt5CW36ENlgD0jD+g+IZDUNnKy5w+09ymm5oAX6j6x7SUr/9O4Wn7tYc59ugzSItNsFfsa6W6Lg5PbRQdt8Wxq6PP2eiTfH1SDIdjbSR58mhN45t9rnGdPIFpE2ORZ5GU5CmuhA4s1kbWqLpnsjUNA1J1KuQxvAvJK2PaCFP6kPvLT073SMvB/9ONwidXbgXze/vIavD34HXNEv7YbTP8Cns8en3RR6xiXc0y3sG0pbvcH+vRXsbPycf9FttXP4vmieTkOayX6Gce9uCTzZpa1tXsDs/SHr6GzkmzByyl8UcI34x2bMgeQnVOF0KfLeafKBnhssaR44bM8mENQ8tBOuRtJkOr80gh394ibwJ/TMkgS12fSnuzrc8ySaTVeu0QVlD06tF08ZjOh09mxxaoxoxwr8hJrAcbTBOpalpZj1NQ3jUkz2RGgplFc1EKZRHhdv6sPGyxHhdWGjfRuN7tvP9Bdnbu9A03v0txtVc4z1taKb4Usl7ZbLT3IYm0Vz/n66IPNV5R7sN9yFGeI/TXYMmYjWajA+7XSsL7U2nj+vI3lnpcFw1Yo5zyNc3putDn3Dau92OWrK313iXsZgcJ2eKy7uO7P10ndv3osftZ4X2NJLpIZJDdSRvtyQA3IPoMR3EqvV3dH0N5HAUySNtmfOeST6l3EgOL7OUbGZMc+V5sinuT8h0MwcJWf+HFrqlSKOZanxWum3fJF9TuwaZ0JLZ7kmkDR7ldjzsvA+R73Z4iLz/tY6me2GprbP9vJpMz/90H28n3wg5xmW+4H79HbmdTnKeF9E8egrNtQuRQJg+M5x/CTKNveh06WKpCo/7bWhxmUmOhVXt/3/vsh5Hh+EqkLnqHOTU8BxZkFtSWhx2bHF4Gm0qlZM9e8o9+MmOv4HMrCcjpr+/B24JTa9E3N/Em7xc9jUhnlNIN9f/rfXAnocY5Vw/16LNT8gT7wY0iavJexCzTKDJ/XGgn1d7IiwtTJQGNHmDy0v25Uv838+QqaEeSUN9kXdLiu2STmbPJTPQc5Bkn7wr1iGGWO70k8jXNyYbehU5/kul+/06tyHZgmvI5q/krjikgLNzCuMynXxNZhqjeeQAaSuRpnYlYi5L/JwuzbmYvIDPJS9WJ7vefmQPnmLYhcmF98mddKBx3Q+FI2kkXze5CDHuiz0uDWihr3YbX0v2HNufHIzxQOMs7S8tcP6LEfOoIO/p1CNz1u8QDQwmh85I8ZgWF3C5HjjBz+l0/gddZjXSvmYjpjsXMeTz/ElB/5LzRiQHsksMbT2WZBHNTkILQBJipnk8byzUX4H2MlIYihSgcCzZQ+wzbt95iE7G+bm4h1dFpqc1LncEopdZzldPPiGdBLxj3O4qJCTVGYcnp7Fx+oVO/z20wG9E7tXJueErhXasJV8TPB9pnA3ITAZNHTeSQFWM0Za83dK8GUvmVQnvo8n7Wel5U/iWtvrs7d5K/WKMt0bZ3Tf6ZGQDIopeTlNO9nCoQ6cT52LpMepKxAis9vs5yGPlbHTwDGRXvsXPISj+fQ9kqjgfEc4QpIZGoGcI4Q1oQlYi6WsgYiBrEcH+EEmfSYO5Bdnq27m8JTHGN5Ov7TwjiqI2ectEhfTdiPYM0oL3cySZjEXM4Sy3rZP7/lakbfzT7U+nhNuhcyMJfyHm6xuTt1eSRnH6tVHXXK4C9rcnSCUyx1znsmuBMSGE0SgC7L0Jj8iD6mm3O92TsZqm1zQGJKWlm9FeNO4bkMdL0gRvIruNJu+X73tMkxaF0zcU3tcal8v8vTLqetTgvnZHNJSekxT9YdcxP+q61wUe7/+4HUuQRoPHDI9DuctJV1cmibgWORpcgZhfOvORvHK+gjzTEi47IGaZcLneNLqSHIuoM9qU7YIWvS8g76iAmO6t6IxFOh+S4lol7XKkab0BMfl7EBNdh7SkcvLtc2uBeTHGa2KM6WbBl5CG0BnNz4FIYi53OzogAewdxmUH9ye6jaCFvBKZZ9oVcNIYda0qaH9vfoxxLJLwlyMaSvP8auPgIqe/CdHi92KMaQP6XLL2kUKbRyQMDjdOu5APVJ7uNA2I2fdAwtZ0P88ie8ZFoEcIIYW07xRCONHPC2OMZ7htcz3PzzBO2xZ2t3Tflh+kBl6NVvP3oMlyPXkFT3c+L0Zxi+ahSfwNxFC+GbNEl1bzE9HA3o/sk9VIVdyABvsZpFrPJquUdyM19FaX1Ygkl7uQpHuly3kKLT7jC304FxFxuqch+eqvd1vmoMWgeJZheiF/DZJQx7l9d6OFJwUZPB9N5sVYo3G+5MUVEaOY6j59D0nKY5AdNIXEvtE4rUNSY6Px8jWkrSxFmkw6ZPYNJO1VuO3PuK6JZO+yJB0+7bE6xf2pc1/ryJJ98jpKeVOguaIk9kH/t4wcfXYBWZq72m1b5rGoQwzhO2gxW4NMEfPc5z+hE7OLgNGuY4LLHOaxSOczxiON683kQ2mjyJe7POoy0wG89eSDl38ja25z3b4k7a4gBzH8Itpc/kYh3eWIZl5C+ylPA78qpG9wvck0WuEyP1GghYTjr5EPkl5NNqutQdJsovXDkb08jdNa93ky0MllTUEa7Xwyg0xePn9zmg97TD9uvDd6HJKknvatZiCGnQ4FVpCjBt/gPj5VpAePQzLPJa+n5N3VAdHTgWgPKAWLHO2xX4vMokvcluHG73/QwnY/0vwOcJ4UHPIal/sAOSLy82ijvIoctjtpaBPch1nu17uKfKGt+efe7q3UAUnB6baqJOGtRQhfjDaTVyLzyknkS1Y6oROZ64OuH+wbY7wx6Kq/dCXifmhj93TyBTWfRQvBGuBiS5nN2/VpFKKjeP3gs8jd7bXI5/2h2Cx2UdD1ih9FE/xIt/e1KBRIgrcAB8QYP1CQxH6HFocvIKb+LuQBczjaAJyPJvWcWLi5yh4blyOpsD0i9l7uayfjcZT7miTX6eRQBUeRL5L/Ht5YRxuWU11HkrBA2tNENFGS18+vgy4U+pXbsBFN1pudvjLGeJ/PGLzV7w9AC+TiEMLVxuW/Xd9gNCm7IOaYvKfejkwayfS0Ai0K70ZMKiJm2BUxtivJ1002AFdGhU34NNpPmBtC+KbH4qIQwpfRnsgHgq57/TUyGx6HFr3prmMVos1ewH1RV792QDTxJsSwBqO9iP5I6HlNdBytoJv7PoNoq4tx1g4x5nk0veb2IMTEf4+0sJdijPNpBiGE42OMLxTyfB5pHIl258QYf9FCvv9F82N/tLAMRZrCdOD/Rd+kFkI4geySvQHdhz7P4VROQKG9D3H+9mRBoI+fV7sdTyBhagCi65NRKJYA/DDGOCqEMApZAb7lcfh5jPGsZu3u5TH/uutpD3wgxvisver+iOZEuixpAZq/34j2BgwhfBTxgoPRvJiLFrjfe9xmoTkYY4zPeG6/2325K8aYri7dLFbZroK9enHYlRBCeCTG+CZPzvfQ9PrQvyPmswhJMt9EDGEq8JO45SBbfWMLQcuCrx7dwfYWb3Ar3so1Fcd7ijIbFfO0Olhfs3z/Roelbo8v89rGnQ12RRxJ0wCIm+LtbEd5LV7juaWxawvYGfTgcn6CBKWJsdk1naGFazFDCN+NMf6ghXJafP8y2vExxCC3y3TSUltbme9AtJj1I8/d+73QvwFt2E+3a/DJbDneUx8cPG9bc8YHEP+KhLopUS7QH0L8oRpFXriCprHKpiC+sbblUncO7NWLQwjh18C/oq6z/AJSV1eGEI5EKuAwZK5J4RN+j2ycw5AUMwAxkBuQF0NfdKI1bWqvJp8EPQRJ0u2QujkVSQsz0KbiaOQOOY5sQjoFST/Pos2yciRNLHMb6l3fCiRJplPA3ZEZ5njXPRVJifu5641IonkMEdVH3I/D3ac3OH01krwCUrWHuIykVlcgKekYt+dQJD3/Ee1V7I9U6KMQ0Za5rCpkojjc7zu7LW9CEt0t6MBfOvdwmds8FU3M9xh3a5Cp4Lvub43TPIXMAvsiLaHebV6PTF/p/oZDyZv0y/zfiWTvleHO29M4Hoak6y7+L+23VCHJFvc7BT1chjSx29AZlVn2tf8H+UKfNeST0MvRxP43Oquw0YvVN8kSb9ovSXb1dcZ3P6Rl9CEfOMNjM4hsApyITBWd3ZeDXPe3YoyrLPn+yvmGoJDxC61hfRJtsn/WY5nu33iCfC3mUETf+xgXVyJN5Z8e10eQBjK8OP8AQgjXOk1z4WkG0tIWIW3uWSSNd0RxkB52/huNp2c8JjORFjUIaZFrkJR/HPle9A3/v70zD5OzqNb4rwhJIIZAgBC2sEoM8GBkl0URRDa3C6jARdkuuKByAQW5ykVAuaiAoCCBsCmyI4RNCCAkEkJYsieTmWTCZN/3dSaZSer+8Z6aqv7S3dMzmZ7cO873PP306eravlOntlNvnYN2xTsQLQFfg1Q7FyPV1EYkx99HMvYJND5UodX8JONVX6QaCnegPo3AGNfYHYb7UZ9cjmSqq7XnUqLp82B1dmerXy8rE/u/C1I5zULw4gVoV7cYycWFCGnV33t/FuV8yq232pIf1OFHEp3CBOz2fCTUexL93c5FA/40JDRzkNDeRzw4PhsN8ivQwdMgosvCYBeniggv9OTaTglh9UjPvtw+F1jYK1a/lVb+dZbnGmTFMbiXDG4KX7Y4YWt9GDqQnYHUT5Ms/V1IR9yABtZ/Q0L3V9Sx6tHksKeVG0wSBx3wdVbWYjS4B6jvffauc1CHnI5UXt8n+nQOt2FTSGw90SPYR2hAuM7C/4DUQ+EuyB+Jd0UOsfasRmiqaZbfeVanV6zea+y/I5C64QV7zzVoEL3Q+DWIiDKbm8jMCqLj9/HobsQ8e6eZlkfQ49cT0Ww7WtqVRFeYq5HF2xXEg9kaNMD1RouQG5HK7W37/xCrf6WVPR8tXvpYmfPRQuNZ4/8ypDJ8x/INaJ2lRBhrsA0UIJVBZlexqf2mtfYJ5wYBaBCgogHW7BM6hThvRAPoYqTjn2XtuMba/NtWj+DQaCOSoamWR/CCuIZcmG44IwhAgcuItr0GEu9KBPMtlUhGNyb51BGh3husfQIiLkB5jyX20Tct3stEiHodWuRVEG92j7B27YT6ajCoGdSgE63eK9DZ4xy0Q19k/LkQLfwarD2/YG0dzi6nYLbKrLyxZR8/t/QAXubJIUAsDzBBrSB6ZApuDUcTDW5VE11kBlO7wy1+uKcQVsZnos5Yi1bJs9Bg3N/oZ01YexO9ZwUzCPugFU566FpLhPOtIcIbg7OcN63uwcXm+uQ965N3HUuua8sGe4edTDjDbnGU5XekxZlu4ZMTfkw2noxCnXi0vX898WJcfVLXMUTDgKuInu1GEyGx4+1TQbwLEUyceDRADiGaRxhCHBSmEW1N1dj3xqTs4OK1jgjnTetURzSQl8In1xOhrHUJL9O0wUPYYDR4hzOIMDlMIzoQWp/wJjXkOAbt+sIAGgbdcO9mfZJ2DAYsSOIGQ20BUBG+A8w3lNXZ6teFKPth4bKBaJ59EpLL/vb/3KTshUjdMQcNbDUh/4QfYTIZRzz0D4NuGMyXk+twqArtFBcjWQ31mEyEhgfoZ0DzhAPjAKMdQzQ4OAH1syeQTE1I2sUlsrgMO6NK+J7y1BMN3vW0/x9Dg/R6+55naYJjoqlEI37ryHUNmvImQN8/iyaDSuJCrcb428XKXWXv8yaCqs+1OI8AR1g+fdFN/rKOn+0dyuoBvPfVaMv3ETo0Xgt8YFvBPdGKAMzJONFO/3K0InFoWwk6O2jwOmg+HQlCX6QSeIVoCfNoBOt7EgntPpbHDLSVfdXqt9z0//8ADnDOnWv16G56zulodXkx2oLui0EmnXOX22EeyJhabwTR6+Sc6+2c+5nVbyCayDYA11i8a61Oj6OO2sM5NxUdeNZYnsuQiuUktE0+mAg/Decks4CdLc86y+dSIhrsSdQpw66pN9opnYGQPpMRVPGrRNeRJ1odphm9DF2W2xfzj+2934840YNW1Vs52dHfCOxoddoW6OZkGqTW+DTA2mh359wbaDCdZ2lJ3mcry7M3miTHI9XLDfY+X7b3/4n9fyka6Nc754JhxfUGUeyCVpVBxTXO2rOKuHodCqx1zh1s/y1xzp1qdRrrBYE8DA0m+6BBbR3R4GAwfXEomjTXm+w/h2T5O5gJbe/9DLTT2QftrNYDK+wQeJjV8w6r8w72LhtNn46lCTrvjURoaQ1wv/e+Kxr07/Te7+W970mEgW6DVC6drR7zkUx/i2iJ9UC0MxiH+u18ouHJ7ZDxwcOJk+sdSBUYrBmsQP3pSCLCKsDSJ6N+NdF738P4+pC930C0C5hL9Ka3FCH8ehr9befcL5DM/Z3oenQtUT22zMl43h7GW7xM7CxAO6f5aDzoTrxrMoVogmYRWrh1tnIOAkY452oQFDvAacv3bOnVfTk/JCto+30R0mcGPwIbrCEOt//vBu4x+kGiyYIfEI2zjSReoOuF4KX97fv3CN66gGjyIUBQhyGBew0NtEcgfWmoUzDvHGCqlWgC+S7RLMNXrO4fW7rwHjPskxquq0RQwb8iATzN0v2WaHiu3uI9jDrCSrQqO8XKOwyt+oOqZQGaNCswkwJoIJpteQYV0mokwPdZOfPQKnEu6oTHJ21yc8LnYcTLQ3cDg4z+IXCl0d+295tC9C29HA3So9Cq9C50xhEmj3DZcAaatM9FCKpaq9dApI6ptXd9lniDel3Cy2Am45PGy/HYDW+0snyaePN1tb1/2B154k34UcTLfj2TNgnqwmAiPqzAJ5AH0mjtE25mv4Em+SoSM9sWL6gLZxKho6vQansvH3cbN9r/szJxrker6HOMh29YvC9b2gFEtdUPia5vs/3v4QLp+xvfBiBgxJ1EWOyBqA89QlTp1Bnvh6DzkOctn79avo+R6/r1W8abqcRd51y0g+qW1O9BhD77EnBtwrtn0RnGfLTaPxH5M38bOevZzuh6tLNcZPQUS/PflteOxMtuDsngFKSyehOd6ZyBJuNvoPOxL6Mzy/5Iddu7rcbP9n4g3d2XAR3jnHNoBYyXcbpeSEgmo1XcMd77+yzu/3jB5j4NHOK9fzyN76NLxZJcR1rcvO4UmwN5M3jkuUTPVQEhMQmtLOssXnekD1+GLrVtgiBxTm4rmyjvc2j3E3D9c5GVzcqm6pqvPAQtbvFFIGdG8YCTvfcvtTCPvG4888RrdDm6mXXeGbXDHuS65zwZTew1RIOJjbLvco03bo/UNzMt/bFoshtN9HkyG6nZ8iHldkSD1dU+g/DKooTy9T+XuL9Fh7VZN6NVhfjpZITwS8Cj2bLt/63QPYq1ef5zaLe4DO3yD/VF3OiGuoZ+5pz7KtrdPW1/d0bqvPB/Z+Bb3vvH7fcZJEYjk/p1RgurHDehhco26HB/4hlRfzKuS8v1tOvJARotPuYbxHdGg9VWaKavRtvO3VDn+wD4ptfdhivQdvIU7/0FTlj261CH/y1axVegc4hRRIujXRA0biSa9ZdZ/B9Y2HHoAPZktGoO6I03iLjuE5Aa5REny55vWb6d0eo4mAAOF6hetHc7Cq2+1qPdxzjv/W+TSeBoouOh5QizPcHKC7e1L0cDwSq0tR1qfPgk6txTkBptvb17H4T02IFoz6oadcaz0GWu2QiFsRxNTk953eTGOfdTtCLfF6m3bvXRleZRakb/kfHhNDSQvOqcexStwra3vD+FdgoHoMnuHnvn04iX+sagVftN6DC3zse7EKd53Z24wvKYZrzsh3Yzs5LJdS4aBDba/5VIjnp67z+2yfU0480eRO9yPZFaITiFCTvTP3qhh7og5NDgZPI+3tL0t/a+HSGdZlgd3ke7zaFeFlhzFiE2gP3E3nc1ktmvEX1vdEEr2BPQrqcC7dSOJLr/HI8GyXDnYz6amHZAO5m3kdpoDdrF3Iz07/UprNPptvx37D3+iHYt09Eud6x9h/Q/twXWvminWm1t0tfqcaiVvQh4xntfZ5PBLHRuuDXaifazd+qNdsEBTfRZJP9VRDTbF4nou0fRjmgJOqT/E9qJHYB2qY8YL6638N8SoeHzLM484/XLqI9eikAie6JnCpKx/qhvdyKqtwcjqGtX1N+ORr7X76acT1ttUbbEB8E4pyGhG4sG/IdRJwymFmrRgHsLEoqZSJ8a7Mq8RFRNhMPTVUgXv5Pl8yAS8NVEdFHwGBdsI92SxF9s8d8kmkYIbksfJ3oKe4FcW0wVVq/rkbDVE9093oImrDBJ/BIN4GuR0C0lwi6/Y7//gjrOSuPD9UREzz32zh/b+y21dxlDPDCchgaMGktbgzrkUCv3BaInvS8m7TLTvrugQTmEB0TMDCK6ZBg6yxlJRCoFX79BLRY82a0gwmLXWRuMsXcaYHlW2aeO6LdjFbooB7JRFMAHa9FkElAjdcbbYRbvBeJN7QCHnkJUV82yNnuQ6GY1IHJWWN2W2vtUEFWCIf/llv8blmcwPvg8kqWg9hqAJrmVSZw/E+V9ZlLOaiRfOxk/Jhgdbp5Pt3qvtbQbrV0vtPoGnoX6PEdEYNUSYdSvo8XLGqLaa4O9/6+svOARMZiwuBctHmqRGif0ieXEm8mPEG+uD7H8ZyH1Vy0aeM8iog+/TTyAnmptXW38nYfURP9NvCV+AhFY8A+EFltLtMO12vhQicaPDURQwh2oD040nvchXroNIIsgq8Hu1ufs/aahXVED5t7YePSh0aOIKqlu5HEt2+rj55YewMs8OUwgDuIbgF2TTh9QQpXEQT9YnAy0RyuOavssIbqdHGwdph7pOC9Ak9FKSzsbnTXUEAeksxLBvoBNXUeGsoN9mFCPjWjFUktE0lQTTTNMTMLXEtEro7DBF62QPBEtFN41DErrEp4FdEU9Ea0zNSkv3DU4hThpDLZ3HmZx3iLXPedKoyuIRvF+ZWVcjVa0Hu0yTjFeN6DDyGAd9w3jxXNIxz+VCPVbh5mGNh5MsHyCKYXBaHU6FO3cKogr0EpLE9ogtEOYZE5BE6m3fG5Dk+IiNAhuQCvntN6D0eq0GrV7BVKhgNp9WdKO7xsdoMf3Eu34vG75BYuzM6xOx1r4+ETe65C872d1DYuWhUR3lgGtE9KPIbr6rCD2lYD2qiA6t59MRJ0tQwuIgBIKiKZ6tCu6jDhR3Uf0yf3vaMGwEU3e/2Vlh1X6BiK8ewbRJlUd0eDdGiJaziPZeMTSBZ/fDUR5XW11v8zS1htvNmBnDuS63R1jMvAVtFjzaNI519KGtnjX3nkH43EwVbOIaJn2Nsvr1xa2yPhXm7TbaGKfW0tEzq0iTghDiGNWpxDeMTm0fHJIfUivTWnioLfQGm9v1FEDpG5fE+7FqMOPJXfQPROpD5agbeMTqFOOQ4PkanRoNR2tePtYul8RYYJVFr8GDSRVeeoRJptgrjnARqcQB/5gtyesJquJXshqiTA5jy7A7Y1chdZbXRegAecBoqeue4iD8nH2HTrbaGJHqrK6BCx/vYUHy6gnoEtH9UjtEVZaYbJdim6B/gapjdIOM8byDaveQK9Gu67JaBKYbuEXW9olxMFtidZqmgAAIABJREFUWpLPk5bPfxIN1gXeB7TQEiK8sxaDdyZyE/JpQAPxecbXxclEXWnxllt+o9AElkKEQ9tNSng50Xg52Pg9Lk/+fyXCfMP9lvPRQX+YcLa3NN9FC5iZaKC9EO1Kwv2G0O6jiF7qzkdyVo0WRnOMf4cb3+dZXsvQyv/wJK/poZ6JXFagRdIIa/fJqO8Ed7pTkUwstLLDpbgnrG1D/1iT5Lua6Ad7BRHy+ybRKvIyIjR3LdFH9UTL92rixHI2caf6MpKRdPBeiXbcH1uaStQn5qEb1BgPg7VhT9zl/M3aqMLKWE80EhnAF6uQPL1M7Dc3W5kbkVzONP7eYO/5047JYfMmh5FEpE/ANIeGqEMoleXEyy/DgFFJ+ifQQLrOGimoQ/ZK8t3Wvg9H9wnut0Z8D6k4HrP4W6PV+1uW3+FoYJ5FvFtxv+X1DvFyzQloe3sS0Q/DQNRpVyL0U7icE9QgC9CgOM0EuMaEa43x5AHrILcjHfZ/Gh/eRB3/b2h7PMDyriIO5K8ldEBm1FidFtg7DbSyAr962Tt91vKqMbqT8arG6uqJu7txxAn8AyJSaCs0KO1JvCQV8O9Pow68hngPocp4PAD5ybiB6NozrHYfQvr8rYkH5tOsnQISpju5C4xrLe0Me+chxtc1RANuvzWe3kTcAf6ciHN/zdpnhfFyHTqf2JroJ2GGtd3wpN2eRedBMyzPCZbXHOP9x2iQPTYZuMIKdGs0EF+OFjx1aHcyG6k17kE7vMvQZHIpcfK6h3ix7jY0mP3C0g5Hsp7esZmAufBMBuY9rdxVaOI71/h/leV/LdLfH06uHxOPJtIJRP8ajyZ8e5g4Gb1Drm8SD3zD6nAb0b3sBCJkNbjmPAFNXmEh1Bvtav8L9YmHkMyOQn3mHPu8T1SxrrdPFl3230R/Fr9BcjkF9ZvXrOyvoTONH6CxZBiaJP6MJuufkccRUjk+7fpA2u4xzPNyQJ+G74E64QrUwbb23o9wzu2J7jDMz8TvixptR1/AZouhMJahTncMEsK1yAb90iReZwStC6uUP6EDput8RDX0QWCBfEbQgqXKsMo8Ch1cOTZ1DdoNCfc6og/fZegAfKn3/u0k34MRbHCi974qCW9EXaCJ7Sh0QLkIdZKP0EHfgVanTvnySfL7lJW9yH6nqJpjvEx0Y+iuVV52bbp679flyWtn4+WePhpx2w4d3q1D+toFLrqLTPk0wdpmfp58j/MyudLXmztP4+VnMzwLd1+6o0HgZHRo+KHX/YKUfxPRBL+QaG3zM8gEgzP+Ls/w/uvG34NQm+9KrtvJfdBB6Sh7t55ECLRDu5O1zrlzkJ/zgZn33MHSv4YG/LnIuc7oJM4e5LoJPYZNjcU1uvB0zn3Bez/U4p6MzsvG2e9/994/Ecr13t+SbU+f61LXEfvTL5KoPRAstBs6jO5r7/C6F/LpQHKNWnbz3g9J3vmb6EJf3neweD/13t9Onsc5dzoyXnkU8UzvJR+NH56NdiNXkEEPOueOQDudVa2Buivn064nh/DYJaZgaG096sAebTuzvm6bhL86544j2mS5BOkT90crnlrUkS9MwnugVfr2qLMHjPPllmWDNzilc+5rCZ1C6TaBr9qFnet8Echbhp6LDtb6o1X2UKQi+YfXZaR877q1N7/CzrmH0W4qmARYhQakhiL0aqJKKx+/Z3rZw89Xdjpx5KWb8xh89VKEtnrBJ36bnXPXo4PAknjpvZ+UxJuNdlMh3pSEZ9sjVEsN2uUEej3R6VCpvJyG1J03ooPMFUiWeiBgwnXe++lN8OCw5Gc/+74TWX11yN/HN9FqeA5RBXKWvedB9p7dEVDgdeBpnzEe6Zwb6L3/bp7yd/ayb3Y6OltZgFbJj6F+uQ3qO+egVXKDDaQ9Ezo1bNdIJ2VM8d73LcaHPPX6tJdP8oFowvwZEfH3QjIhd87892ufBzobeIB2CMHA5VPovKwnOq9Yh27bV6Ld8Y+Jdpk6o7Fk64RegXaE94UJuKxPW2xPttQHrczeT5i/whpkhf2uIh7QBpMX6xJ6dR46qEwOIdpkmU6uv+g5aCC4D3WqYMMlHJROwMxlWNnL0Eryd0i99AoSpmn2PRvtcJajrf+OaLVYTzQpMRtNWHVoVf+g1Xc90lNPIF4Ge8fi3Uc8cFtkv4NZ7R1RJ1mKtsdXEb2DeSJqJajr8tGriTrWaqJe+k10uHw32kWE9ro+035BLfXpTLsE+m9Ju6R02l4vEg/eXySixRqAJ31UW9U1k5fzjS8PEhcd71jbr0G7ujuIFy2D2YtwTrCumbxcSlShhcuIT6Ebzp2QemY00SVsUJP8HclMLdHN6pKEDqYp1iA5DCiagIRqQAP3560dRyLV3mLLIxz4/x1NdkuNJ9VE+1fvohV+sEUV2q+aeEnwR9YWnydeCA0yFFRLQY24jHjhMlU91Vv8kK6e6GZ1eULPNvrnwItW7miEPhtt7fYiUvPcafW5HqnbpiPDjicQEVTLkAwdYnnth9Rc8+zd3yWi1V5DZ2xz7P372P/T0HlMBUJ5XWnvUG30TEv7JaRm3sT3equPn1t6AC/z5DCWiCxI6T9Y41xt34tNUIJQfoaoc87SPzVB3N/y2kjuRBEOx7x1lIeJTniC3nlmItyzkv+mWPh64kFXGHjCwFVHhNqFw98U8lZL1C+naKVuluY8NCEEOOW5JpC/IR6mBTMi64k6b0+0+1OJVCAY/2bnoecTDwTrkb74l8Sbx6+hiS+gla5GHfhF+4Q7Gi9au9Q1o41SOjiG+Ya9V0C5VFkdnzeeT20BL3dK4s1I+LqS6EjnCIiuSBO6phm8nG3t0QlNDH8z+g6iK9qziBP+T6yMSnR2UGfvep61+Rp0E/dW4nlXgO9Os7DvoUmgAXgrec8AiFid8Ka/teVoIow13PZ+FO3WliD5PhDJnEdqOtAgGsp/G026g4nnK5+w9DPQbeTZaIDsTDz32i3hRzBPch+Sq2DR9ASiPJyAFieria5Kx1h+Y8m1pRagwScYP/6ayMoaIqy2EoE/3kG7ocnGs58QrdC+HRY+RITh+KTs8UT02gSivbCuGbqy3ONne7et9Anv/Qd56O+hQ83tiBC6zkS8+rNEvH2Wftd+D3bOfRYN0BN8dGcZzjeuIR4sfg0JyhrUgRYgwToadZgVCKbWF1vVeu+DTZ11aEDbF0PCeNkVCqtarMxPGN1g7wJmUMz0xsEQ2iDv/flE94rfQpfG9vJS70xDg9y7xpvhFh5WrBBVc1h9d8pDB3UIxoNtvPc3Wdo53vvTiQf1lyE44Pb2vR0aRJzRXazupbZRSteijngr0bQHaLU+Fw0E3YiuOpvDy+2TeGuMr5NQe55oeV7t5XJ0I+rcgQ71KIWXtcB2XrrrIejs4gik094dXea8xfjVFV0ExMKCumiul5vQcOHzS0i9Nhepcva1MzpvbXW/l/69HjjEOXe3tVWwoYTFBcn2Su/9YZb3e162lD5Gk/Dlxqse3vtK7/1Tlra/k5vRxcBuxttPIpMkpxn/9vfehwG4t5czqlp0zlRv8WqRzF6JJolu6OC7K1q4OePzvUTEVbhXsQQN5jsh9dwDJPLgNRp3Qrv5ndEk09/eO9zb2BvtKIOZkoMRoORTRM9wu1qavZ3sPXUnys9WCNhymrVFJwvvlPD4YMwFr9f5W/nPA7b06r6cH4Tr/jvSXz6DEBV3oY7+DwtfiW4bQoShBjXG0jx0taU5yuiGpLx7gV8kvyciJNAItEqpQZ35GdQhhqAJImzR38H831q9XyZ3Vbvcyg6Qt/lsCnlbgDrCUDQozkerzhrUMd5DiJ0pGBzO3vtCo1PbOK9aWfdYHh+jiTX4uj7WeFCXhx5j73QOwrbPNno1Zr/KyvgIIYmGo04e7Fy9R7RbNI64ii6ljbL0EqPXEu8apLwM6p3m8HKCpRtKvDx2g/3/lvFssfHsb9auyxM6rM5L4WWVvcfRRBx9WIysQivOy9HEFNxwhl3eyRYvuE29nIg++gzR1ehS4gW0NUTbYBda+IVoAFyNztnGWL0uQJNDUM+kaKWgIrnG4ixB+vqnjHfvoZ3FcOPtROPZtaifBJetu6Od23rjQTD6dwla0b+EVFqr7D3mkuuStALt0E82Ps4zOqiEgvmRtQh++k/L60zkSbLewh9B8rcMqY7mo360F5KDkUgdO8Pa50jLcxXaVfyKCGddZ/ybSrwzM8XoYDtsPlFFOYO4Y+mFPNiVdfxs9wfSCbJgD3TBqjvqLPPRKnkFWk2/byYKlnnvX3PO/RjZ3fl6ht4LGdK6zOgHgDN9fpeeZ3vvf2eolruQyd39kjiN4Uhd9WO0iv8N8aZtT2Bf7/2dzrl/Q1vbFyyLanu3z6CDwuAvYJ296wokmIvR6ukk4uD6ojdkTCFkhnOuB5osPBoY/oTUZ3PRoL678bAX0WF7oKus3H3Qymo71Pn7IsEebGV8CnXor6NJYnfv/SIL7+R18Ju2SyltlNKXIEN/l2Ta7jyk336qhbzcHq0wd0ErxveJ6o5TjGd/Qai1w+3/Hpb3BwhFdliJvJxiZR6I1BPbWH0rkEvNqcbLq5A65J9OXt3+x8vN7a8RrPUkl+vm9pPIlMYNaCDE8q5D6JtlTuZnUpeeByA1UYoGOsN7v7f9/3vv/dVG90Hy9jSC8/4AyfgqdHP5CDT47g0c5b2vtDa63fg0BQ3cM4nqyF5oMN6VONAGw4sVaPLtifpR4MVVaGc30Dl3O/KLcKSThdOPvfdfchmXoc65ZcR+BjrsX2D8eNve4TDj1Syr1ye99yucc19EC8WNaFf8Klo09LDfw4F3vPcHuWgvK6gpFzvnKqyOi7coomlLr+7b2wfbhWxueEvKKNc7bG55aHv8PbRyOi7z3/Wbk3e52uv/6gdNSNei1XhA9ryEwAzdm5m+Jxq4K5C+/rvZvJL471t5F1mc36ND2mvQwH1RvnpQQDeeqUdVofcolL412rRY3milXzCfPH2kqbx2RosdEKilslBds2UXossua1ta2LfUpxTmF6H/QkT0pPT+SOeY/a9Q+E6YuqQ59SC5+b0Z75Cte8E6taQ8NCEMQxPCS2j7fCVSDwxP4o9O4n2OOIl8Dh1GtyZ9HDYZWf1eRCqGtNzjk/gpfSy6xBTiDSyQprl1KlReSp+IVEfXoJXxFLSzmIkG7XvRYD0CDfRD0G4mDPx/QBDKCqTeedPSBxtgg4jOjEJew63dqpB6dpHlO9ziTCbaAKtDB/ufR+ieUVbXcK8jTD4/Sur3AgIlNCf990gmEAxcYO2Z0qMLhOfQSH10VBpu/x2JVLyji8j86EwfCXllJ42Q18CMzIf42TI2KbsQXfYxsq0K2hIf4sAXzASHT9jOt4TeH6kMpiM9YIN9Tyfeygw2YRqaCA/wyKbKCxNLoN8q8X32L0DvR4RFZusU/EK0pLyUfhrpTn+O1AHhxunWSDXzPDowXIzUSlcSXa4GuraV6VHE2/DBmGBlieUGI41P2O+GMtc1pZeigfxepM5YiAbSBnTOcC/x5v1TRNtAY9DAHw50B1nbVln6DUhd6Ii+LEJeiy3OQosz2OLckdQjxKlFZxE3ool+BVKVNaBJZBCSq5VJ/erRuUyp6YPhy3A+lP1sSOiGAnEKfQLEeC1Sf01DZxuDM+NJOkgPTsPRQD8dLTaC86o0r5y0SfypBeIPLlDW4NYYGzsmB4MMEk0z1BPx3b6FdPg9I8k3lFFvglmTpCkW3pzy8qVt6n3qm6Dz5Tu9SF1bwr9w4WsDcUIYg/Tcw9GANtjaazxahT2PDnwXtzLdEx2KhvAAJZyEzCIUS9vN+BLeobbMdU3pcQldn9R7ifHMoTO0AHV0xntHhGKOT+k0fUKPS/IKh9ZjkzjLkGop5BPsFT2MVvc3Ef2i32xxHEXq14z04RC/NwJ3LEN9cBuk759m4Y9anAfR/YwZSXgObWXvYnkNQuCEm4FdkjFkF3S+1ItNJ4tdrPzBye+paJf2nOXVJ6QNdU3i9rF3fhUBUBrjW5w+CJXVWFaWLuenvUNZa4AveMFApyJYXGej57WEtt/LkQXQfdGAEcq4ErjN69A5pCkWPhX4ZRNlP4LMPGTTLkC+EJqqa0Py3in9I7SKzub7BvDnlpSXoScj9dR+CJ21FA00Q5Aph5vt3bp4709zzu0CdPW6VTsW7VqWtTJdiSajEN7d5GQHNIEVS/smWmGORQeSncpc10J0AzrcB+34vNeIMQxNwNjvDd4eDIZrdA0RjjoooReg3Z1HK+gApxyZxFmJ3H56K3uNhf/M+PFLtHOc6L2/wf7f2eI3Otax3+uIkOFS0j+NdjZPEs2274J2OZ+3bH+MVGhPIghyV4tTjVRjObRz7r+IfioWAY9Yub2cc3s6+cP4ElLXfc7ktI+TmR3QXZEBFn4gAlN8EvX3/7S8fo883p2GFhMnWdqz0JjwSwy+msa3OH9BkxxWjzvz0OV7yj37bMkPubDMLH1rS2j7/eOEfibkm6fsW4uFl1inSaG8PHGmllDXZ5IycupaIN9JRepatLwM/Rhmlz5T1j/Jhf8+huxcnY/0wKdZ+IgQrxXpucSLg2n4Y8SVZKG0l6LJ4bSULmNdU3pYUu9LE/ppdKcg8PJBNOHtj1bq3bPx7L9389APJvEnEVf12TiVSXkhzivE3UWaz2vI+U7IZ35Sv3eTfEpNH+7e3IRUT3Mtz2HkWs/dCt0BWWNxriC66U3pUWhHNZdcuT8VLXTOst+pz5G3iTuFgcRb/COQmY1snBlEF6qz0WQCUq9NS/hdkSd+Y7j9zkuX67PFB/D28qFMKCWaQEG09juUuzyiTfp8KI2yCnxb8rKtPmhVn4+XrtDvLM2mgIfKImk3QfEglVChekwsoQ4tSb8bWrlXBjpP2uoQnsZJ0lak+WTSphPCuoROB/JJRNRRRSY80JVEFV1lEl6RpK3M0BOz4VkZbQt5be9qpU0eM4bVqrQ9RxT4r1nheeiFzrmjsuXZLctFLalrkf+OaO3y8tBBRdH4/smz1WbkWwrdZrxsK9prpNhElnwYTZPfhWhy22ITGUjyCtZ4s+V1zpNPeDoXKXdz0s8D/g0dmPcxuvGxuoY4afyU7pzm4+SKtjGLJJ/a5D9HvE2/LdFKQeckPI2zkKgGXIjOrkA7qJA2GOvMxm8MT3ifQ5fz2brcBfwffLIdoTVoUKPm+6+54Vn6+0gd1NXJyXkIvwDZqBnQgroW+m8hOihuzfLyDjzkvn9W4MvRRm3Ny7akC8lSS9KXIgM3ZfKpdjJNnm3T09EZR1P8a2n6zW3TUG5jPs65P9v/651zD6BLeFcl/3Wxut2ELuLdbPEXEs1h1BIXQc8DtzrnbkSopmOcc0PRofkblk9vZeluRKrVz1qcvS18KDKIeZvFD+9W1udfcXLIdoRm0865bdAhVuPj7bAKoTAWlhi+CzrkK1ie9/5DG0zfQxeNQFvSo733C51zzX0H0AC9DVqh5KvT59DBcWuUly0rDDx/dvJNsRbZqkkFfrPbKB9dLl62Jd1Eu2VlqWj6QKfp88jAJWicGIPxCcjK9FXo3OA9O+StQzfNj0GuNv+YrU/mPZqdPtCb2aah3E8g+Oj9yMTL/ug2/zeRBYTF6MLfpegmO8hN7a3Ab5xzF6Ib2TjnxiLjioHuhWT+K+gOwwdo4hiB5P1jBOklKfs9tPMYYeHbIWDAsem7Ue6n3HqrLfkhFzqW0ilErLn0Lgj2eBYJzM3+Sw+i0jSFwi9CCIli5R0IfCZP+KGYR6gm6hpgeNm6PgqckyfN9xEqqSXlFaLTslII34doZXg7ERbYGm3U1rwsR11L4WUafj46L2iqfmn6lL6IKIupDKRxUj6lMr0LMg1xMTpEnmD0ScBDBfj3EPHAt5T05WrTUO7DCB10MbqA+Cf7/15kOO8NDOZqn5ss7HUEsngFob9etDR/Mno4umB4s9X1ICv7YGTS52KErnrC6K8QD6SPxywKWPxeWbqs42e5C9iSH+ssZ+WhU8FuLn0+5oPA6ElJvulBVJqmUHiKdihUXiEUxKvIPktTdZ2EJrJsXVPkRJomRVE0t7xCdFpW48Bjv5da/Q5GA1FrtFFb87IcdS2Fl43hGV4Wq1+aPqVTWUxlII2T8imV6fOTOM+hHcx0hAJ6oAD/Uj8epaQvV5uGcsehA+zpaMd0HbLvdCpCEJ1g8dIB+1vAK0ang/fFCAE3HUGE70rq9DWjTyVOAiMtbjb+UOSIKxu/kS7np72rlY730RtVSu9KNHnbLNp7/7iTR7RAP+S9f97ihQs72fSFwo8nYsULld3DPtnwfTATvk3UtbF+mbquQvjwbPpDiIdjzSqvCJ2W9QW0hQ/PJ7z3zzvnTkW+di9oYRml0OXiZTnqWgov03AwXjZRvzR9SqeymMpAGmcfIp9Smf4IuNM59wWkJ19p/y333l8Gefn3cFLvJtMX4UeL2zRT7l5W7nrv/YnOuaeAEd77151zvb33/7Q0v0Z3TU5GE91BFn40cKWTp7jdEMTWAYu991danIOQKukldGnvi865Sit7Bbr0l8bvRZS/151zd2Tpcj7tHa3kitD5kAWl0AANGfRCeFLUQZqmUHiKdihUXiEUhCP6GihW10I8SJETaZoURdHc8grRaVmNA48dQoeLW68T/Rq0pIxS6HLxshx1LYWXjeEpL5uoX5o+pVNZTGUgW17gUyrTVUhv/1W08p1idUnrkK1T2odKSV+ONk3LnYMutwYeHpJMCKkM9CL6ZjiE6L/lQXReEPJqsLw6J2nXI9Pxoeztkvir8sTvnOd3ProsT3ufHFJ4Wkqngt0s2jrhFIReGIiE/OoEddDbUAddgC5NhO+KbgkXK3shErRseD0yedBUXWsNlpiF5D2MHKxk69QL6U6bXV4ROi2rF7DBynoGqErqtLE12qgIXS5elqOupfAybbdGXjZRvzT9aGAPQ8PsAYzOIwNp/G2JbZfK9J8RX0chnf77aBBu7HN5+Bf6UEnpi/CjxW2KbmavQWqkHkTTIGCDryGmlhuqKYSHgXl7dGYGcDYa3Icgo4fbW17VSdpqdBsftANZYfFDWDb+cjRppMitHLqcT7v252CC9QwSvpVIGCqJ3qHGt4Duh2z074rQC1PRdnEkQjZg4UF18mGR8LfQreJidTrY4s/BUBBoS7o7mtwnNlHXp9Bho0cHbudZef0QzO/ETJ1eRiiORS0or1g9QlnHE/0534O2/8+g26+HIauwm9tGbc3LctS1FF5mZWwXhIwpVr80/ZFogtiIzGUciuQ4lYE+9t7HAQcYn7IyHVA4AYlzBRpAP0R9Y1we/v0a7RJKTV+uNr0Nydz30A6pMzrH6IP69l7I1Mw9CEX0Bct3CJoQrvLeP2AD9hXIHe14y7MLsj77eaJb028g0yM9kBvT/ZE5jO4WfyzyhreY6ElxWRJ/bwzF5b2fQhmfdj05ABgs74fIdWJXtJVbZX+3lPaogW/0gsuFMoJudhgRnlYs/BjLa5smyqtHAjnH4oeVyT7osKxY2nVEw3n7JTxYZ/Hez1OnYCiwJeXlo9OyXkUHz+9Z/qsRbPFkNDDVNyPfltDl4GW56pqPLtZu65BNq2L1S9M/icaASc654IbyXHJlYAkaTN9BK99LkOznyLQ3aGWSz0Vo0OuDDqKz/Otn9Xu/GekL8WZz27TCeLkCOeP5Opp0tkKTZ3e0kzobjSMOIaqqEfx0LrmDd+DNCMvjcDQRHoQWRRvRRNQPwXSr0eF4hZX9KWTLqxtCOI3KE/887/0PKedT7hPvLflB2+OD8tAp4qC59MFIUE4wul+S71AiuiBNUyg8RTsUKy8fCuJd4NclpO2HhDJb1xQ5kaZJURHNLa8QnZaVQviCb4JfWPyHWqmN2pqX5ahrKbzMtttzJdQvTZ/SqSymMvCu5Zvl01CiTKd8TfNJ+1yWf4OICKBS0perTTeBh6Id1O8sn0q0w7/d8r8Y3flYjCCqbyG5fdLCL7YyBhh9RybtaMv3IzQBTEe7kB/lKTuNkzd+WcfPthqot8QHbWNPyEOngt1c+lSEogj0jCTfCqJdlDRNofCngJomyrsEbVMrkQ6yysos5X0a65enrtOJA0Capi9a5bSkvEJ0WlY68ByK9L/zTOBHtVIbtTUvy1HXUnjZGG6/l5dQvzR9SqeymMpAHdrRZfmUyvSpBfJJ42f5tzypdynpC/Fjc9v0iTz5vIvcmQZjjF+3sOCS9Fkro9BAng72adqVSM1Vn5Zh/L7Byh6JzHfXZ+icOrXFp71DWVPEQUo3QsSaS3vByLZN6BTm1rlA+kLhKdqhUNkPokO0/mhL6tHBV5Pvk61fpq4pciJNX4UGhOOaW14ROi1rGhHCtwTdvg3wwYrWaKMidLl4WY66lsLLNBxg2xLql6ZP6VQWUxl4Fak9s3xqlGmfC61M82mMn4d/24ZKl5K+CD82t03vyObjvZ/qnOsL3GRy2g+dPyxCZzXnokH/ATSJ7oHug7yEfMF/Dzg3T9rdkMzP894fb3y4yvg9DCGXphg9D53BDcsTv02e9o5WKgYD69xCGqA+QRSkPGxEF2TSFApP0Q6FyiuEgijlfbL1S+kUOZGmSVEUzS2vEJ2WlUL4bkE63w1JmpaWUQpdLl6Wo66l8LIx3A5EA2qnWP3S9CmdymIqA9tgtn/I5UUq0yT/ZWU6fdI6pX2olPTlatNN8nGyqVSF0FlfRfcZRiM+TLa4C9Dg3R0bvL33d1seVcAX86T9Bzpv2N0594Bz7otW17PRvYghaZwi8dvkae+TQw6MLB9ErLm0dcJRwF3OuTeBdc65Ac65v6BVyU4uGujatonwHZBhrmJl16Er+P2QnnM7JGhdnXO/KKGuy51zZ+SB5A0Ceuap07lo69/s8orQaVmvY17E0Na/moijb5U22gK8LEddS+Fl2m5/AD4qoX5p+uUDELh3AAAFW0lEQVTIsc1UzOlNHhl4HaFm+gA7O+dezsq0c+5eBHHNynRje+bhX+hDJaUvwo/NbdOaPPkMRQN6Z4QeugzdIJ8N3GXvvgc6AN+B4oP9GUnavyDo7HqErLrF6noKOrfol4mzFZqgcuLbeHMKZX7aNVrJtoavIGTMTGS6YSW5ELHm0gGVsC9CU7yLbMBMQnrHI5CApKiGQuEp2qGp8vYmFwWxvZU/s4m0zwDfsbC/ogO/lfbfA2gQyNb1cKT+aW55xeoRyjoIDVAfotXRf9j3FKRjPYXNb6O25mU56loKL7PtdjzSXxerX7YtAnqmNxExlsrAMcCZSJ1yHvJ9/AG5Mh3a9F00yA5AEM60z2X59werz9klpi9XmxaEhzrndkQoou8bL05Cg/cg1N9vQuqlbmiM6Y7UdCHOcGQO/LxM2pHIqN85CNr6TWS/KniJC2VvEqdQ/HI87XpyAHDOdQX+HXWkrZBAZCFizaVTSNmP0argQmRhdArwuBV/BVpxFQsP9lxKLe98NLCW+j79kCGwfYHT0aqoRybfQnVtSXlNvQPGsx1Rh3sOoZZ+gzrQc63URm3Ny3LUtRReZtvt6RLql68tFiFV0mfYVAbO897/0Dl3KPBt8st62qYvWl5Zvmb59xY62C41fbnatCR4aDpglzKQF4pT7kG9tZ52PzmExwT7PLSaWoS2lwe0kF6PVjtd0PbxLnQQdQVwDVpdrUXohaOKhIdVRal1mgY8572/pwXvMw2t+LYirii7oUs+heq0OeWldN6yvPd7l7GN2pKX5a5rk7zM026F6pemr0Mr609Z/KeRHKd5zUfqmv3RYWqIk1em0zYtwtdpaGI5uIXpy9Wmz3nvw92Rf/mnXZ85OOf6OuduMNTAA0SMvUMDfEvodWgLui1CSJyOtqq7oa1wbyR0R6HtfrHwUuq0DqEgHEJB7NiM91mHttg7oBvdJydpDkGojWyd7kaXnFpSXiG6sSzv/Q7e+29ih9BlaqO25mU56tokL/O0W10J9UvTd8fQMwjK2ZNNZeAoIoAgjdMo02mbFmnPLP++28z05WrTl9Ai+cSOiSHztBVmdkt8kC71n+g6eqBnbg5t+Z6JbvbOQh1tnNFnopVVQ4nhJZVnZdY0930SHtTmSZO3TptTXhE6LesBhOSYVq422gK8bEu6YLuVWL80/Rvo0LSYDIT4xWS9sU0L8TVP/ZqVvlxtGtJu6bHq/+KnXe8cKAEi1lzaYG4r0cqrH7nohVuQLjOLaigU3oh2KFZecyBveep6IxHql8ZLURSNdXLOTXLOXduS8orQaVlDkd2e3s65AcgJSqu20RbgZVvSBdsNHUI3Vb9C6JnxSCZzZMB7P8h7fw7FZb2xTdGE47N1yMO/vDJRKH252rSt4aH/n552PTlkBLsQRKy5dApBux14zXu/O9LhjgCuJXo1u6iJ8DdQRyu1vFIgb9m0Z1jYYATPy0LpCtW1JeU19Q67IETNHxEmfSzw+TK0UVvzshx1LYWX2Xb7cgn1K9QW96IJIkcGAmzSe7/Ge39VAVlP8xmEBt8sX7P8W4ImhFLTl6tN2xQe+v/padeTQ3hMsB/33n8FCeCz6BBsc+mxyGMU3vvZ3vv/8N7vnP7XjPCSy2vh+4xEB3750jRV19bkX8hzqff+fm/IjTK2UVvzsi3pQu1Wav02aYtCMkDyFJGTNJ9ifM3Wr7npy9Gmm7znv/rzL4NW6ng6no6n4+l4Sn/+JXYOHU/H0/F0PB1P856OyaHj6Xg6no6n49nk6ZgcOp6Op+PpeDqeTZ6OyaHj6Xg6no6n49nk6ZgcOp6Op+PpeDqeTZ7/BQrkIaWuiTbIAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"acc_grp = df.groupby('account')\n",
"##quantity_ordered = product_group.sum()['Quantity Ordered']\n",
"\n",
"accounts = [product for product, df in acc_grp]\n",
"\n",
"plt.plot(accounts, result)\n",
"##all_data_my.groupby([\"Hour\"]).count()\n",
"\n",
"plt.xticks(rotation='vertical')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Salary distribution of customers month wise"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"account Month\n",
"ACC-1037050564 8 3568.36\n",
" 9 3568.36\n",
" 10 4460.45\n",
"ACC-1056639002 8 6390.02\n",
" 9 6390.02\n",
" ... \n",
"ACC-964839203 9 6240.80\n",
" 10 6240.80\n",
"ACC-966140392 8 7718.73\n",
" 9 5145.82\n",
" 10 5145.82\n",
"Name: amount, Length: 296, dtype: float64"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result1 = df[df['txn_description'] == 'PAY/SALARY'].groupby(['account','Month'])['amount'].sum()\n",
"result1"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAEnZJREFUeJzt3X2MZXV9x/H3t+ADMhaWrkzXlXSlUVJ0I7BTC7VtZnxEMKJ/mEqMgaJZ6wNRu22zSNLaGhN8QI1pUyWFSltlRIvVrFikhNGatNhZCuzSFXlwq7tuQKJSh5DUab/94/6WvTvMzH06d+b48/1KJnOe7rmf+c3MZ8+ee+6ZyEwkSXX5hfUOIElqnuUuSRWy3CWpQpa7JFXIcpekClnuklQhy12SKmS5S1KFLHdJqtCxa/lkGzduzC1btqy6zaOPPsrxxx+/NoGG0OZ8bc4G5htFm7NBu/O1ORv0l2/37t0PZ+YzBtpxZq7Zx7Zt27KXW2+9tec266nN+dqcLdN8o2hztsx252tztsz+8gHzOWDfelpGkipkuUtShSx3SaqQ5S5JFbLcJalClrskVchyl6QKWe6SVCHLXZIqtKa3H2irLTu/vOr6/Vecv0ZJJKkZHrlLUoUsd0mqkOUuSRWy3CWpQpa7JFXIcpekCnkpZB+6L5XcsXWRi7vmR7lM0kswJY2LR+6SVCHLXZIqZLlLUoUsd0mqkOUuSRWy3CWpQpa7JFXI69zHrNe17JI0Dh65S1KFLHdJqlDPco+IUyLi1ojYFxF3R8Q7y/L3RsTBiLijfJw3/riSpH70c859EdiRmbdHxNOB3RFxc1n30cz88PjiSZKG0bPcM/MQcKhM/yQi9gGbxx1MkjS8gc65R8QW4EzgtrLoHRFxV0RcExEbGs4mSRpSZGZ/G0ZMAF8D3p+ZN0TEJPAwkMD7gE2Zeckyj9sObAeYnJzcNjs7u+rzLCwsMDExMdAXMao9Bx/pe9vJ4+DBx47Mb918QmP7XqrXvpdaj7EbhPmG1+Zs0O58bc4G/eWbmZnZnZlTg+y3r3KPiCcBu4CbMvMjy6zfAuzKzOevtp+pqamcn59f9bnm5uaYnp7umalJg1yLvmPrIlfuOXI2q9c910e5zn3Q+7mvx9gNwnzDa3M2aHe+NmeD/vJFxMDl3s/VMgFcDezrLvaI2NS12WuBvYM8sSRpfPq5WuZFwBuBPRFxR1n2HuDCiDiDzmmZ/cBbxpJQkjSwfq6W+QYQy6y6sfk4kqQm+A5VSaqQ5S5JFbLcJalClrskVchyl6QKWe6SVCHLXZIqZLlLUoUsd0mqkOUuSRWy3CWpQpa7JFXIcpekClnuklQhy12SKmS5S1KFLHdJqpDlLkkVstwlqUKWuyRVyHKXpApZ7pJUIctdkipkuUtShY5d7wBrYcvOL693BElaUx65S1KFLHdJqpDlLkkV6lnuEXFKRNwaEfsi4u6IeGdZflJE3BwR95bPG8YfV5LUj36O3BeBHZn5a8DZwNsj4nRgJ3BLZj4HuKXMS5JaoGe5Z+ahzLy9TP8E2AdsBi4Ari2bXQu8ZlwhJUmDGeice0RsAc4EbgMmM/MQdP4BAE5uOpwkaTiRmf1tGDEBfA14f2beEBE/zswTu9b/KDOfcN49IrYD2wEmJye3zc7Orvo8CwsLTExMDPAl9Lbn4CON7WvyOHjwscZ2t6qtm08YaPtxjF2TzDe8NmeDdudrczboL9/MzMzuzJwaZL99lXtEPAnYBdyUmR8py+4BpjPzUERsAuYy87TV9jM1NZXz8/OrPtfc3BzT09N9xu9Pk29i2rF1kSv3rM17v/Zfcf5A249j7JpkvuG1ORu0O1+bs0F/+SJi4HLv52qZAK4G9h0u9uJLwEVl+iLgi4M8sSRpfPo5BH0R8EZgT0TcUZa9B7gCuD4i3gR8F3jdeCJKkgbVs9wz8xtArLD6Jc3GkSQ1wXeoSlKFLHdJqpDlLkkVstwlqUKWuyRVyHKXpApZ7pJUIctdkipkuUtShSx3SaqQ5S5JFbLcJalClrskVchyl6QKWe6SVCHLXZIqZLlLUoXW5i89ayyW/uHvHVsXubgsG/SPa0uqi0fuklQhy12SKmS5S1KFLHdJqpDlLkkVstwlqUKWuyRVyHKXpApZ7pJUIctdkirUs9wj4pqIeCgi9nYte29EHIyIO8rHeeONKUkaRD9H7p8Czl1m+Ucz84zycWOzsSRJo+hZ7pn5deCHa5BFktSQUc65vyMi7iqnbTY0lkiSNLLIzN4bRWwBdmXm88v8JPAwkMD7gE2ZeckKj90ObAeYnJzcNjs7u+pzLSwsMDEx0f9XUOw5+MjAjxnG5HHw4GNr8lQD6862dfMJ6xtmGcN+b9dKm/O1ORu0O1+bs0F/+WZmZnZn5tQg+x2q3Ptdt9TU1FTOz8+vus3c3BzT09M9My219N7m47Jj6yJX7mnnbfC7s7Xxfu7Dfm/XSpvztTkbtDtfm7NBf/kiYuByH+q0TERs6pp9LbB3pW0lSWuv5yFoRFwHTAMbI+IA8KfAdEScQee0zH7gLWPMKEkaUM9yz8wLl1l89RiySJIa4jtUJalClrskVchyl6QKWe6SVCHLXZIqZLlLUoUsd0mqkOUuSRWy3CWpQpa7JFXIcpekClnuklQhy12SKmS5S1KFLHdJqpDlLkkVstwlqULt/EvParVh/xj5jq2LTDcbRdIKPHKXpApZ7pJUIctdkipkuUtShSx3SaqQ5S5JFbLcJalClrskVchyl6QKWe6SVKGe5R4R10TEQxGxt2vZSRFxc0TcWz5vGG9MSdIg+jly/xRw7pJlO4FbMvM5wC1lXpLUEj3LPTO/DvxwyeILgGvL9LXAaxrOJUkawbDn3Ccz8xBA+Xxyc5EkSaOKzOy9UcQWYFdmPr/M/zgzT+xa/6PMXPa8e0RsB7YDTE5ObpudnV31uRYWFpiYmOg3/+P2HHxk4McMY/I4ePCxNXmqgXVn27r5hLE9z7Bj3c/YjTN3L8P+7K2FNmeDdudrczboL9/MzMzuzJwaZL/D3s/9wYjYlJmHImIT8NBKG2bmVcBVAFNTUzk9Pb3qjufm5ui1zXIuHvIe44PasXWRK/e08zb43dn2v2F6bM8z7Fj3M3bjzN3LsD97a6HN2aDd+dqcDcaXb9jTMl8CLirTFwFfbCaOJKkJ/VwKeR3wr8BpEXEgIt4EXAG8LCLuBV5W5iVJLdHz/EJmXrjCqpc0nEWS1BDfoSpJFbLcJalC7bzsQyPb0uOKlv1XnL9GSSStB4/cJalClrskVchyl6QKWe6SVCHLXZIqZLlLUoUsd0mqkNe56wl6XSMvqf08cpekClnuklQhy12SKmS5S1KFLHdJqpDlLkkV+pm5FNLL85rleEp188hdkipkuUtShSx3SaqQ5S5JFbLcJalClrskVehn5lJIaZy27PwyO7YucvEKl4juv+L8NU4kjcYjd0mqkOUuSRWy3CWpQiOdc4+I/cBPgP8FFjNzqolQkqTRNPGC6kxmPtzAfiRJDfG0jCRVaNRyT+CrEbE7IrY3EUiSNLrIzOEfHPHMzPx+RJwM3AxcmplfX7LNdmA7wOTk5LbZ2dlV97mwsMDExMQTlu85+MjQOZs0eRw8+Nh6p1hem7NBf/m2bj5h1fWr/RyM8lhYPV+vfY/bSr8XbdHmfG3OBv3lm5mZ2T3oa5ojlftRO4p4L7CQmR9eaZupqamcn59fdT9zc3NMT08/YXlb7j++Y+siV+5p53u/2pwN+svX681Cq/0cjPJYWD3fer+JaaXfi7Zoc742Z4P+8kXEwOU+9GmZiDg+Ip5+eBp4ObB32P1JkpozymHeJPCFiDi8n89k5j81kkqSNJKhyz0zHwBe0GAWSVJDvBRSkipkuUtShdp7aYV+LrXlqijpZ51H7pJUIctdkipkuUtShSx3SaqQ5S5JFbLcJalClrskVchyl6QKWe6SVCHLXZIqZLlLUoUsd0mqkOUuSRWy3CWpQt7yV+pDr1sRr/YHtJu4jfGOrYtc3PDtkNf7j35rvDxyl6QKWe6SVCHLXZIqZLlLUoUsd0mqkOUuSRXyUkhVo4lLDn+ejHJ5p56obePpkbskVchyl6QKWe6SVKGRyj0izo2IeyLivojY2VQoSdJohi73iDgG+EvglcDpwIURcXpTwSRJwxvlyP2FwH2Z+UBm/g8wC1zQTCxJ0ihGKffNwPe65g+UZZKkdRaZOdwDI14HvCIz31zm3wi8MDMvXbLddmB7mT0NuKfHrjcCDw8Vam20OV+bs4H5RtHmbNDufG3OBv3l+5XMfMYgOx3lTUwHgFO65p8FfH/pRpl5FXBVvzuNiPnMnBoh11i1OV+bs4H5RtHmbNDufG3OBuPLN8ppmX8HnhMRz46IJwOvB77UTCxJ0iiGPnLPzMWIeAdwE3AMcE1m3t1YMknS0Ea6t0xm3gjc2FCWw/o+hbNO2pyvzdnAfKNoczZod742Z4Mx5Rv6BVVJUnt5+wFJqtDYyz0iTomIWyNiX0TcHRHvLMtPioibI+Le8nlDWR4R8fFyS4O7IuKsrn1dVLa/NyIuajjnMRHxHxGxq8w/OyJuK8/12fKiMRHxlDJ/X1m/pWsfl5Xl90TEKxrMdmJEfD4ivlXG8Zy2jF9EvLt8X/dGxHUR8dT1HLuIuCYiHoqIvV3LGhuriNgWEXvKYz4eEdFAvg+V7+1dEfGFiDix17jECrf+WGnsh83Wte4PIyIjYmOZb8XYleWXlrG4OyI+2LV8XccuIs6IiH+LiDsiYj4iXrimY5eZY/0ANgFnlemnA9+mc7uCDwI7y/KdwAfK9HnAV4AAzgZuK8tPAh4onzeU6Q0N5vwD4DPArjJ/PfD6Mv0J4K1l+m3AJ8r064HPlunTgTuBpwDPBu4Hjmko27XAm8v0k4ET2zB+dN609h3guK4xu3g9xw74HeAsYG/XssbGCvgmcE55zFeAVzaQ7+XAsWX6A135lh2X8nE/cGr5ebgTOH21n9ths5Xlp9C5cOK/gI0tG7sZ4J+Bp5T5k9sydsBXD3+NZbzm1nLsGinGAb9BXwReRufNTJvKsk3APWX6k8CFXdvfU9ZfCHyya/lR242Y6VnALcCLgV1lAB/myC/cOcBNZfom4JwyfWzZLoDLgMu69vn4diNm+0U6BRpLlq/7+HHkXconlbHYBbxivccO2LLkl6yRsSrrvtW1/Kjths23ZN1rgU+X6WXHpXtMu7db7ed2lGzA54EXAPs5Uu6tGDs6hfzSZbZb97Erz/m7XV/vZ9Zy7Nb0nHv5b/iZwG3AZGYeAiifTy6brXRbg3He7uBjwB8D/1fmfwn4cWYuLvNcj+co6x8p248r36nAD4C/ic5po7+OiONpwfhl5kHgw8B3gUN0xmI37Rm7w5oaq81lelw5AS6hc2Q2TL7Vfm6HEhGvBg5m5p1LVrVl7J4L/HY5nfK1iPj1IfM1PnbAu4APRcT36PyeXDZktqHGbs3KPSImgH8A3pWZ/73apsssy1WWj5rrVcBDmbm7jwyrrRtLPjpHuGcBf5WZZwKP0jm1sJI1y1fOXV9A57+9zwSOp3OX0JWeZ63HrpdB84w1Z0RcDiwCnz68aMAcjeaLiKcBlwN/stzq9czW5Vg6pzDOBv4IuL6cj25DvrcC787MU4B3A1eX5WuSbU3KPSKeRKfYP52ZN5TFD0bEprJ+E/BQWb7SbQ36ut3BEF4EvDoi9tO5s+WL6RzJnxgRh98H0P1cj+co608AfjjGfAeAA5l5W5n/PJ2yb8P4vRT4Tmb+IDN/CtwA/CbtGbvDmhqrA2W68ZzlxbNXAW/I8n/vIfI9zMpjP4xfpfMP953l9+NZwO0R8ctDZBvX2B0AbsiOb9L53/fGIfI1PXYAF9H5nQD4HJ076R7OPP6xG/Sc1xDnyAL4W+BjS5Z/iKNf5PpgmT6fo19s+GZZfhKdc88bysd3gJMazjrNkRdUP8fRL668rUy/naNfFLy+TD+Po1/AeYDmXlD9F+C0Mv3eMnbrPn7AbwB3A08rz3ctcOl6jx1PPPfZ2FjRue3G2Rx5Yeu8BvKdC/wn8Iwl2y07LnSOVh8oyw6/KPi81X5uh822ZN1+jpxzb8vY/T7w52X6uXROa0Qbxg7YB0yX6ZcAu9dy7BorxlW+4N+i81+Iu4A7ysd5dM5x3QLcWz4f/iKCzh8BuR/YA0x17esS4L7y8XtjyDrNkXI/lc4r1PeVb/rhV+OfWubvK+tP7Xr85SX3PQx4JUCPXGcA82UM/7F841sxfsCfAd8C9gJ/V36Z1m3sgOvonP//KZ0jnjc1OVbAVPla7wf+giUvdA+Z7z46pXT49+MTvcal/A59u6y7vGv5smM/bLYl6/dzpNzbMnZPBv6+7Pd24MVtGTs63bebzj8gtwHb1nLsfIeqJFXId6hKUoUsd0mqkOUuSRWy3CWpQpa7JFXIcpekClnuklQhy12SKvT/HJYn0WGL+VUAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]