-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathredmod.lyx
313 lines (256 loc) · 6.35 KB
/
redmod.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
\start_of_appendix
Outline
\end_layout
\begin_layout Itemize
Consider model on domain
\begin_inset Formula $\boldsymbol{x}$
\end_inset
(e.g.
positions in space or time) with unknown parameter fields
\begin_inset Formula $\boldsymbol{a}(\boldsymbol{x})$
\end_inset
that fulfills
\begin_inset Formula
\[
\boldsymbol{F}(\boldsymbol{f}(\boldsymbol{x}),\boldsymbol{x};\boldsymbol{a}(\boldsymbol{x}))=0,
\]
\end_inset
yielding fields
\begin_inset Formula $\boldsymbol{f}(\boldsymbol{x})$
\end_inset
as a solution implicitly.
\end_layout
\begin_layout Itemize
Replace
\begin_inset Formula $\boldsymbol{a}(\boldsymbol{x})$
\end_inset
by (continuous) random fields.
\end_layout
\begin_deeper
\begin_layout Itemize
Scalar quantities can be thought of as constant fields, axisymmetric quantities
as constant over
\begin_inset Formula $\varphi$
\end_inset
and plasma profiles as constant over
\begin_inset Formula $\vartheta$
\end_inset
and
\begin_inset Formula $\varphi$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Itemize
Search for
\begin_inset Formula $\boldsymbol{f}(\boldsymbol{x})$
\end_inset
as random fields now as an output.
\end_layout
\begin_layout Itemize
Simplification 1: Parametrise
\begin_inset Formula $\boldsymbol{a}(\boldsymbol{x})$
\end_inset
by a finite set of scalar random variables
\begin_inset Formula $\boldsymbol{\alpha}$
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Itemize
Choose distribution of random variables according to measurement uncertainties
via (Bayesian) inference.
\end_layout
\end_deeper
\begin_layout Itemize
Simplification 2: Parametrise
\begin_inset Formula $\boldsymbol{f}(\boldsymbol{x})$
\end_inset
by finite set of interpolation parameters
\begin_inset Formula $\boldsymbol{\beta}$
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
Since
\begin_inset Formula $\boldsymbol{f}(\boldsymbol{x};\boldsymbol{\alpha})$
\end_inset
is a random field,
\begin_inset Formula $\boldsymbol{\beta}(\boldsymbol{\alpha})$
\end_inset
become random variables.
\end_layout
\begin_layout Itemize
How to translate from
\begin_inset Formula $\boldsymbol{f}(\boldsymbol{x};\boldsymbol{\alpha})$
\end_inset
to
\begin_inset Formula $\boldsymbol{\beta}(\boldsymbol{\alpha})$
\end_inset
?
\end_layout
\end_deeper
\begin_layout Itemize
Question: In which way are quantities continuous?
\end_layout
\begin_deeper
\begin_layout Itemize
Continuity in space/time: Should be valid up to certain order of differentiation
in physical quantities.
\end_layout
\begin_layout Itemize
Continuity in parameters: Not necessarily, bifurcations possible.
Possible to assume locally, otherwise model makes no sense.
\end_layout
\end_deeper
\begin_layout Itemize
Need to discretize each
\begin_inset Formula $\beta_{k}(\boldsymbol{\alpha})$
\end_inset
in parameter space to be able to interpolate/extrapolate over
\begin_inset Formula $\boldsymbol{\alpha}$
\end_inset
\end_layout
\begin_layout Itemize
Methods: PCE and Gaussian processes
\end_layout
\begin_deeper
\begin_layout Itemize
Question: How to treat non-uniformly distributed random variables in PCE?
\end_layout
\begin_deeper
\begin_layout Itemize
Answer: Use Hermite polynomials with support
\begin_inset Formula $(-\infty,\infty)$
\end_inset
as a basis for Gaussian random variables (See Xiu).
\end_layout
\end_deeper
\end_deeper
\begin_layout Itemize
Question: How to treat structure-preserving algorithms in a consistent way?
\end_layout
\begin_deeper
\begin_layout Itemize
Simple answer: use structure-preserving FEM degrees of freedom (e.g.
Raviart-Thomas) as
\begin_inset Formula $\boldsymbol{\beta}$
\end_inset
\end_layout
\end_deeper
\begin_layout Itemize
Attention: the output is plotted over parameter space.
Uncertainties of output are evaluated either by Monte Carlo sampling of
surrogate model, or by explicit sum over squared coefficients in PCE.
\end_layout
\begin_deeper
\begin_layout Itemize
Only
\emph on
after
\emph default
that, we can plot our random field over the domain
\begin_inset Formula $\boldsymbol{x}$
\end_inset
together with error bars.
The problem of interpolating this field is a different one from the one
of interpolating in parameter space, and for this,
\begin_inset Formula $\boldsymbol{\beta}$
\end_inset
are used.
\end_layout
\begin_layout Itemize
Question: How to translate uncertainties in
\begin_inset Formula $\boldsymbol{\beta}(\boldsymbol{\alpha})$
\end_inset
back to uncertainties in
\begin_inset Formula $\boldsymbol{f}(\boldsymbol{x};\boldsymbol{\alpha})$
\end_inset
?
\end_layout
\end_deeper
\begin_layout Section
Literature
\end_layout
\begin_layout Standard
The Geometry of Random Fields + Random fields and Geometry by Adler
\end_layout
\end_body
\end_document