-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmechanics.lyx
1482 lines (1138 loc) · 32.6 KB
/
mechanics.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass revtex4-1
\options notitlepage
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "tgpagella" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine natbib
\cite_engine_type authoryear
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\tht}{\vartheta}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ph}{\varphi}
\end_inset
\begin_inset FormulaMacro
\newcommand{\balpha}{\boldsymbol{\alpha}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\btheta}{\boldsymbol{\theta}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bJ}{\boldsymbol{J}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bGamma}{\boldsymbol{\Gamma}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bOmega}{\boldsymbol{\Omega}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\d}{\text{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\t}[1]{\text{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\m}{\text{m}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\v}[1]{\boldsymbol{#1}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\renewcommand{\t}[1]{\mathbf{#1}}
\end_inset
\end_layout
\begin_layout Title
Notes on Mechanics
\end_layout
\begin_layout Author
Christopher Albert
\end_layout
\begin_layout Date
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
today
\end_layout
\end_inset
\end_layout
\begin_layout Section
Lagrangian and Hamiltonian mechanics
\end_layout
\begin_layout Standard
Instead of taking the traditional approach we immediately view the Lagrangian
\begin_inset Formula $L$
\end_inset
via a differential 1-form
\begin_inset Formula $\Theta_{L}$
\end_inset
defined on a phase-space-time manifold with points
\begin_inset Formula $y$
\end_inset
.
A 1-form eats a point
\begin_inset Formula $X$
\end_inset
and yields a covector
\begin_inset Formula $\omega$
\end_inset
.
If we group the two together we can also write it as a covector field
\begin_inset Formula $(X,\omega)$
\end_inset
.
Sometimes a
\begin_inset Formula $1$
\end_inset
-form is also defined identically to a covector field to make the situation
more confusing.
More information on this formulation can be found in the book
\begin_inset Quotes eld
\end_inset
Classical Dynamics
\begin_inset Quotes erd
\end_inset
by Jose/Saletan, 3.4.2 although the 1-form is constructed only over space
and not space-time there.
\end_layout
\begin_layout Standard
Points
\begin_inset Formula $y$
\end_inset
can be described in a certain chart by a coordinates tuple
\begin_inset Formula $(y^{\mu})$
\end_inset
that can be written as
\begin_inset Formula $(y^{\mu})=((x^{k}),\tau)$
\end_inset
in charts that do not mix space and time, where
\begin_inset Formula $\tau=\tau(t)$
\end_inset
can be some function of
\begin_inset Formula $t$
\end_inset
.
For an
\begin_inset Formula $N$
\end_inset
-particle system,
\begin_inset Formula $\mu$
\end_inset
runs from
\begin_inset Formula $1$
\end_inset
to
\begin_inset Formula $4N$
\end_inset
in general if any particle is allowed to have its own time the dimension.
If a universal time is used for all particles, we only require a total
of
\begin_inset Formula $3N+1$
\end_inset
coordinates
\begin_inset Formula $((x^{k}),s)$
\end_inset
where
\begin_inset Formula $k=1\dots3N$
\end_inset
.
A differential form eats vector fields, yields scalar values, and can be
integrated along curves/hypersurfaces/volumes.
For a 1-form being a covector field, we can split this process into eating
a point, yielding a covector, and taking an inner product with the curve's
tangent vector.
This means we don't even need a vector field, but can just integrate along
a curve.
A curve eats a real number and yields a point of the manifold.
Since it's smooth we also get a tangent vector in each of these points
being its tangent vector.
To integrate a 1-form
\begin_inset Formula $\omega$
\end_inset
along a curve
\begin_inset Formula $\gamma$
\end_inset
parameterized by
\begin_inset Formula $t$
\end_inset
we first evaluate
\begin_inset Formula $\omega$
\end_inset
at the point
\begin_inset Formula $\gamma(t)$
\end_inset
, which yields a covector.
Then we take the inner product of this covector with the tangent vector
\begin_inset Formula $\dot{\gamma}$
\end_inset
.
\end_layout
\begin_layout Standard
The problem of finding the actual orbit curve
\begin_inset Formula $\gamma$
\end_inset
of a mechanical system subject to a Lagrangian
\begin_inset Formula $L$
\end_inset
in space-time is given by a variational principle over configuration space-time.
Namely the action integral
\begin_inset Formula
\begin{equation}
S[\gamma]=\int_{\gamma}\Theta_{L}.\label{eq:S}
\end{equation}
\end_inset
between any starting point
\begin_inset Formula $A$
\end_inset
and end point
\begin_inset Formula $B$
\end_inset
of the orbit curve
\begin_inset Formula $\gamma$
\end_inset
should take an extremal value.
The action
\begin_inset Formula $S$
\end_inset
is a functional that eats curves
\begin_inset Formula $\gamma$
\end_inset
and gives out a real number that we want to minimize/maximize.
Now we often have to solve an initial value problem
\begin_inset Formula $A$
\end_inset
is known, but
\begin_inset Formula $B$
\end_inset
is unknown.
Since Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:S"
\end_inset
should hold no matter what points
\begin_inset Formula $A$
\end_inset
and
\begin_inset Formula $B$
\end_inset
are we can start at a differentially short distance and work ourselves
forward in differentially short steps.
This will lead us to a set of ordinary differential equations describing
for a certain parameterization of
\begin_inset Formula $\gamma$
\end_inset
.
Classically one would choose the time
\begin_inset Formula $t$
\end_inset
to be this parameter and writes
\begin_inset Formula
\begin{equation}
S=\int_{t_{0}}^{t_{1}}\Theta_{L}(\gamma(t))(\dot{\gamma}(t))\,\d t
\end{equation}
\end_inset
The information of
\begin_inset Formula $\gamma(t)$
\end_inset
contains both, a point
\begin_inset Formula $\gamma(t)$
\end_inset
and and tangent vector
\begin_inset Formula $\dot{\gamma}(t)$
\end_inset
.
The use of a one-form makes the integral invariant with respect to reparametriz
ation of
\begin_inset Formula $\gamma$
\end_inset
, e.g.
\begin_inset Formula
\begin{equation}
S=\int_{s_{0}}^{s_{1}}\Theta_{L}(\gamma_{s}(s))(\gamma_{s}^{\prime}(s))\,\d s
\end{equation}
\end_inset
can be used with some function
\begin_inset Formula $s(t)$
\end_inset
.
Together one could say that the curve gives a 1-dimensional sample of a
vector field
\begin_inset Formula $\v Y=(\gamma,\dot{\gamma})$
\end_inset
.
\series bold
TODO:
\series default
attention, we again mix up the curve parameter and the coordinate here.
\end_layout
\begin_layout Standard
In a seperated chart with unique time
\begin_inset Formula $s=\tau=t$
\end_inset
we have point components
\begin_inset Formula $(\gamma^{\mu}(t))=((x^{k}(t)),s(t))=((x^{k}(t)),t)$
\end_inset
with
\begin_inset Formula $k=1\dots3N$
\end_inset
and tangent vector (space-time velocity) components
\begin_inset Formula $(\dot{\gamma}^{\mu}(t))=((\dot{x}^{k}(t)),\dot{s}(t))=((\dot{x}^{k}(t)),1)$
\end_inset
with
\begin_inset Formula $k$
\end_inset
.
This is the coordinate space where the Lagrangian
\begin_inset Formula $1$
\end_inset
-form is classically defined via
\begin_inset Formula
\begin{equation}
\Theta_{L}=p_{k}\d x^{k}-H\d t.
\end{equation}
\end_inset
Then
\begin_inset Formula
\begin{align}
\Theta_{L}(y)(\vec{w}) & =(p_{k}(y,\vec{w})\d x^{k}-H(y,\vec{w})\d t)(v^{i}\partial_{i}+v^{t}\partial_{t})\nonumber \\
& =p_{k}(y,\vec{w})v^{k}-H(y,\vec{w})v^{t},
\end{align}
\end_inset
evaluated in
\begin_inset Formula $y$
\end_inset
.
In particular for
\begin_inset Formula
\begin{equation}
\vec{w}=\dot{\gamma}(t)=\dot{x}^{k}(t)\partial_{k}+1\partial_{t}
\end{equation}
\end_inset
we have
\begin_inset Formula
\begin{align}
\Theta_{L}(\gamma(t))(\dot{\gamma}(t)) & =p_{k}(\gamma(t),\dot{\gamma}(t))\dot{x}^{k}(t)-H(\gamma(t),\dot{\gamma}(t))\nonumber \\
& =p_{k}((x^{i}(t),\dot{x}^{i}(t)),t)\dot{x}^{k}(t)-H((x^{i}(t),\dot{x}^{i}(t)),t)\equiv L((x^{i}(t),\dot{x}^{i}(t)),t).
\end{align}
\end_inset
Classically, in a time-independent system we set (now skipping time dependencies
in brackets)
\begin_inset Formula
\begin{align}
p_{k} & (x,\dot{x})=\dot{x}^{i}M_{ik}(x)\\
H & (x,\dot{x})=T(x,\dot{x})+U(x)=\frac{p_{k}(x,\dot{x})\dot{x}^{k}}{2}+U(x),\\
L & =\frac{\dot{x}^{i}M_{ik}(x)\dot{x}^{k}}{2}-U(x)=T(x,\dot{x})-U(x).
\end{align}
\end_inset
This leads to the usual way to write the Lagrangian with a positive definite
mass matrix (actually a rank-2 tensor field)
\begin_inset Formula $M_{ik}$
\end_inset
.
One could add a magnetic force via a vector potential field
\begin_inset Formula $\v A$
\end_inset
.
Now the question is where the coordinate dependencies enter, and what we
can write coordinate-independent.
In particular our concern is the special role of the time variable
\begin_inset Formula $t$
\end_inset
that we would like to replace by a stretched time
\begin_inset Formula $s(t)$
\end_inset
or even a space-like coordinate or a mixture of the two.
Despite the relativistic use this can give us more flexibility when treating
classical problems.
Some treatment of this problem can be found in the work of Struckmeier,
improving the description of extended phase-space that is e.g.
described in the textbooks of Goldstein, Landau and in the
\begin_inset Quotes eld
\end_inset
Handbuch der Physik
\begin_inset Quotes erd
\end_inset
by Synge.
The newest version of Fliessbach's book already contains this more general
treatment of extended phase-space.
\end_layout
\begin_layout Standard
In a more general sense we can write the Lagrangian
\begin_inset Formula $1$
\end_inset
-form as
\begin_inset Formula
\begin{equation}
\Theta_{L}=p_{\mu}\d y^{\mu}=p_{k}\d x^{k}-H\d t.
\end{equation}
\end_inset
Here we have for the classical case
\begin_inset Formula
\begin{align}
p_{\mu} & =p_{k},\quad\mu=1,2,3\\
p_{0} & =-H.
\end{align}
\end_inset
The transformation properties follow
\begin_inset Formula
\begin{equation}
\bar{p}_{\mu}=\frac{\partial y^{\nu}}{\partial\bar{y}^{\mu}}p_{\nu}.
\end{equation}
\end_inset
For a pure change in the time variable
\begin_inset Formula $t$
\end_inset
to
\begin_inset Formula $\tau$
\end_inset
we have only a change in the momentum corresponding to the Hamiltonian,
with
\begin_inset Formula
\begin{equation}
p_{\tau}=-\frac{\d t}{\d\tau}H.
\end{equation}
\end_inset
This still has nothing to do with a change of the curve parameter from
\begin_inset Formula $t$
\end_inset
to
\begin_inset Formula $s$
\end_inset
that is independent form the relation of
\begin_inset Formula $t$
\end_inset
and
\begin_inset Formula $\tau$
\end_inset
.
We take
\begin_inset Formula
\begin{align}
\Theta_{L}(\gamma(s))(\dot{\gamma}(s)) & =p_{\mu}(\gamma(s),\dot{\gamma}(s))\dot{y}^{\mu}(s)\nonumber \\
& =p_{\mu}(y^{\mu}(s),\dot{y}^{\mu}(s))\dot{y}^{\mu}(s)\equiv L(y^{\mu}(s),\dot{y}^{\mu}(s)).
\end{align}
\end_inset
Now what remains to do is to get equations of motion for this general parametriz
ation.
\end_layout
\begin_layout Standard
In the usual formulation (see Jose/Saletan) we have
\begin_inset Formula
\begin{equation}
\theta_{L}=\frac{\partial L}{\partial\dot{q}^{k}}\d q^{k}=p_{k}\d q^{k}.
\end{equation}
\end_inset
The Lie derivative of this 1-form along the vector field
\begin_inset Formula
\begin{equation}
\Delta\equiv\dot{q}^{k}\frac{\partial}{\partial q^{k}}+\ddot{q}^{k}\frac{\partial}{\partial\dot{q}^{k}}.
\end{equation}
\end_inset
defined on
\begin_inset Formula $TQ$
\end_inset
as the
\series bold
base manifold
\series default
is
\begin_inset Formula
\begin{align}
\t L_{\Delta}\theta_{L} & =\left(\t L_{\Delta}\frac{\partial L}{\partial\dot{q}^{k}}\right)\d q^{k}+\frac{\partial L}{\partial\dot{q}^{k}}\d\dot{q}^{k}\nonumber \\
& =\frac{\partial L}{\partial q^{k}}\d q^{k}+\frac{\partial L}{\partial\dot{q}^{k}}\d\dot{q}^{k}\equiv\d L.
\end{align}
\end_inset
So we get EOMs
\begin_inset Formula
\begin{align}
\t L_{\Delta}\theta_{L} & =\d L.
\end{align}
\end_inset
This is easily extended to space-time via
\begin_inset Formula
\begin{align}
\t L_{\Delta}\Theta_{L} & =\d L.
\end{align}
\end_inset
\end_layout
\begin_layout Standard
Now in the standard Lagrangian formalism
\begin_inset Formula $L=L(q,\dot{q},t)$
\end_inset
is a function on
\begin_inset Formula $TQ\times\mathbb{R}$
\end_inset
.
\end_layout
\begin_layout Standard
We rather consider the phase-space Lagrangian
\begin_inset Formula
\begin{equation}
L(q,\dot{q},p,t)=p_{k}\dot{q}^{k}-H=p_{\mu}\dot{y}^{\mu}.
\end{equation}
\end_inset
defined on
\begin_inset Formula $TQ\times T^{\star}Q\times\mathbb{R}$
\end_inset
.
This is rather written as a 1-form
\begin_inset Formula
\begin{equation}
\Theta_{L}(z)=p_{\mu}\d y^{\mu}.
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
Now the difference to the usual Lagrangian formalism is that this is a 1-form
on the phase manifold
\begin_inset Formula $T^{\star}Q$
\end_inset
with
\begin_inset Formula $\v z=(\v y,\v p)$
\end_inset
and not
\begin_inset Formula $TQ$
\end_inset
with variables
\begin_inset Formula $(\v y,\dot{\v y})$
\end_inset
.
In both cases there are no terms with
\begin_inset Formula $\d p_{\mu}$
\end_inset
or
\begin_inset Formula $\d\dot{y}^{\mu}$
\end_inset
inside
\begin_inset Formula $\Theta_{L}$
\end_inset
.
Now we take an exterior derivative
\begin_inset Formula
\begin{equation}
\d\Theta_{L}=\d p_{\mu}\wedge\d y^{\mu}.
\end{equation}
\end_inset
If we now specify any relation between momenta to reduce our motion to a
hypersurface of dimension
\begin_inset Formula $2N+1$
\end_inset
we get equations of motion.
Usually we take
\begin_inset Formula
\begin{align}
p_{0} & =-H((x_{k}),(p_{k}),t),\\
\d p_{0} & =-\frac{\partial H}{\partial x^{k}}\d x^{k}-\frac{\partial H}{\partial p_{k}}\d p_{k}-\frac{\partial H}{\partial t}\d t.
\end{align}
\end_inset
Then we get a differential form on the reduced hypersurface with
\begin_inset Formula
\begin{equation}
\d\Theta_{L}=\d p_{k}\wedge\d x^{k}-\frac{\partial H}{\partial x^{k}}\d x^{k}\wedge\d t-\frac{\partial H}{\partial p_{k}}\d p_{k}\wedge\d x^{k}.
\end{equation}
\end_inset
The eigenvectors of this form give the direction of vortex lines i.e.
motion.
(see book of Arnold).
Since we had a 2-form to start with, any equation that reduces dimension
by one will yield an orbit curve.
\end_layout
\begin_layout Standard
This should work with any reasonably well posed relation
\begin_inset Formula
\begin{align*}
F(z_{\mu}) & =0,
\end{align*}
\end_inset
or with a total differential
\begin_inset Formula
\[
\d F=\frac{\partial F}{\partial z_{\mu}}\d z_{\mu}.
\]
\end_inset
Then cut
\begin_inset Formula $\Theta_{L}$
\end_inset
with
\begin_inset Formula $\d F$
\end_inset
to find orbit.
\end_layout
\begin_layout Standard
In fact a differential way should suffice with any one-form representing
\begin_inset Formula $F$
\end_inset
or
\begin_inset Formula $H$
\end_inset
for which the exterior derivative vanishes, not only for total differentials
of unique functions.
\end_layout
\begin_layout Standard
\series bold
IDEA: CONSTRUCT GUIDING CENTER MOTION WITH GYROPHASE REPLACING TIME INSTEAD
OF USING IT IN SPACE!
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
\omega & =\left(mv_{\parallel}\hat{\v b}(\v R)+\frac{e}{c}\v A(\v R)\right)\cdot\d\v R-J_{\perp}\d\phi-\omega^{t}\d t\\
& =\left(mv_{\parallel}\hat{\v b}(\v R)+\frac{e}{c}\v A(\v R)\right)\cdot\d\v R+\left(K-J_{\perp}\right)\d\phi.
\end{align*}
\end_inset
Now we have relations of canonical momenta
\begin_inset Formula
\begin{align}
\v p & =mv_{\parallel}\hat{\v b}(\v R)+\frac{e}{c}\v A(\v R),\\
p_{\phi} & =K-J_{\perp}
\end{align}
\end_inset
in space-time in terms of
\begin_inset Formula $8$
\end_inset
non-canonical phase-spacetime coordinates
\begin_inset Formula $(t,\v R,\phi,v_{\parallel},J_{\perp},K)$
\end_inset
transformed to canonical
\begin_inset Formula $(\v R,\phi,\v p,p_{\phi})$
\end_inset
.
Since nothing depends explicitly on
\begin_inset Formula $p_{\phi}$
\end_inset
, the quantity
\begin_inset Formula $K-J_{\perp}$
\end_inset
will be conserved during motion.
\end_layout
\begin_layout Standard
Constraint:
\begin_inset Formula
\begin{equation}
F=\omega^{t}+H(\v Z)\overset{!}{=}0.
\end{equation}
\end_inset
Differential:
\begin_inset Formula
\begin{equation}
\d F=\d\omega^{t}+\frac{\partial H}{\partial z^{\mu}}\d z^{\mu}\overset{!}{=}0.
\end{equation}
\end_inset
Now we had condition
\begin_inset Formula
\begin{equation}
K\d\phi=\omega^{t}\d t.
\end{equation}
\end_inset
Exterior derivative yields
\begin_inset Formula
\begin{equation}
\d K\wedge\d\phi=\d\omega^{t}\wedge\d t.
\end{equation}
\end_inset
Using the constraint we can write the part of the symplectic form
\begin_inset Formula
\begin{equation}
\d K\wedge\d\phi=\frac{\partial H}{\partial z^{\mu}}\d z^{\mu}\wedge\d t.
\end{equation}
\end_inset
\end_layout
\begin_layout Section
Guiding-Center
\end_layout
\begin_layout Standard
Have guiding Lagrangian
\begin_inset Formula
\[
L(\v R,\dot{\v R},\cancel{\phi},\dot{\phi},v_{\parallel},\mu)=\left(mv_{\parallel}\hat{\v b}(\v R)+\frac{e}{c}\v A(\v R)\right)\cdot\dot{\v R}-\frac{mc}{e}\mu\dot{\phi}-\left(\frac{mv_{\parallel}^{\,2}}{2}+\mu B(\v R)+e\Phi(\v R)\right).
\]
\end_inset
As a 1-form:
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\theta=\left(mv_{\parallel}\hat{\v b}(\v R)+\frac{e}{c}\v A(\v R)\right)\cdot\d\v R-\frac{mc}{e}\mu\d\phi-\left(\frac{mv_{\parallel}^{\,2}}{2}+\mu B(\v R)+e\Phi(\v R)\right)\d t
\]
\end_inset
Transform
\begin_inset Formula
\[
\d t=-\frac{mc}{eB}\d\phi.
\]
\end_inset
so
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align}
\theta & =\left(mv_{\parallel}\hat{\v b}(\v R)+\frac{e}{c}\v A(\v R)\right)\cdot\d\v R-\frac{mc}{e}\mu\d\phi+\left(\frac{mv_{\parallel}^{\,2}}{2}+\mu B(\v R)+e\Phi(\v R)\right)\frac{mc}{eB(\v R)}\d\phi\nonumber \\
& =\left(mv_{\parallel}\hat{\v b}(\v R)+\frac{e}{c}\v A(\v R)\right)\cdot\d\v R+\frac{mc}{eB(\v R)}\left(\frac{mv_{\parallel}^{\,2}}{2}+e\Phi(\v R)\right)\d\phi.
\end{align}
\end_inset
Now we have a Hamiltonian system with space
\begin_inset Formula $\v R$
\end_inset
together with
\begin_inset Quotes eld
\end_inset
time
\begin_inset Quotes erd
\end_inset
\begin_inset Formula $\phi$
\end_inset
and canonical momenta in space-time parameterized by
\begin_inset Formula $(\v R,\phi)$
\end_inset
defined via
\begin_inset Formula
\begin{align}
P_{0} & =-K=\omega_{c}^{-1}\left(\frac{mv_{\parallel}^{\,2}}{2}+e\Phi\right),\\