-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplots.py
108 lines (84 loc) · 3.36 KB
/
plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from pathlib import Path
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
def project_timeseries(df, value, **kwargs):
if value not in df.keys():
print(
f"WARNING: {value} is not a column of the DataFrame. Valid columns are: {', '.join(time_series_df.keys())}"
)
return 1
scale_factor = 2.5
fig, (ax, legend_ax) = plt.subplots(
ncols=2,
figsize=(6 * scale_factor, 4 * scale_factor),
gridspec_kw={"width_ratios": [4, 1]},
)
time_fmt = mdates.AutoDateLocator()
ax.xaxis.set_major_locator(time_fmt)
projects = time_series_df.sort_values(value, ascending=False)[
"repositories"
].unique()
if exclude_list := kwargs.pop("exclude", None):
for project in exclude_list:
projects = np.delete(projects, np.where(projects == project))
plot_style = kwargs.pop("plot_style", "line")
for idx, project in enumerate(projects):
selection = df["repositories"] == project
plot_kwargs = {"color": None if idx < 15 else "black"}
if plot_style == "scatter":
ax.scatter(
df[selection]["date"],
df[selection][value],
label=project,
**plot_kwargs,
)
else:
plot_kwargs["linewidth"] = kwargs.get("linewidth", 3)
ax.plot(
df[selection]["date"],
df[selection][value],
label=project,
**plot_kwargs,
)
handles, labels = ax.get_legend_handles_labels()
legend_ax.legend(handles, labels, borderaxespad=0)
legend_ax.axis("off")
xlabel = kwargs.pop("xlabel", "Date")
ax.set_xlabel(xlabel, size=14)
ylabel = kwargs.pop("ylabel", f"Number of {value}")
ax.set_ylabel(ylabel, size=14)
fig.tight_layout()
# Ensure img directory exists
Path.cwd().joinpath("img").mkdir(parents=True, exist_ok=True)
file_types = ["png", "pdf", "svg"]
for extension in file_types:
fig.savefig(f"img/time_series_{value}.{extension}", facecolor="white")
def write_markdown_section(df, plots):
dates = df["date"]
with open("time_series.md", "w") as write_file:
file_str = "\n## Time Series Plots\n"
file_str += f"\nCovering dates from **{dates.min()}** to **{dates.max()}**\n"
base_url = "https://raw.githubusercontent.com/iris-hep/analysis-community-summary/gh-pages"
for plot in plots:
if plot not in df.keys():
print(
f"WARNING: {plot} is not a column of the DataFrame. Valid columns are: {', '.join(time_series_df.keys())}"
)
else:
file_str += f"\n### {plot.capitalize()}\n\n"
file_str += f"![{plot}]({base_url}/img/time_series_{plot}.svg)\n"
file_str += "\n"
write_file.write(file_str)
if __name__ == "__main__":
time_series_df = pd.read_csv("summary-time-series.csv", parse_dates=True)
exclude_list = [
"All IRIS-HEP Analysis Systems",
"root-project/root",
"alexander-held/cabinetry",
]
plots = ["stars", "watchers", "contributors", "forks", "tags", "releases"]
for plot in plots:
project_timeseries(time_series_df, plot, exclude=exclude_list)
write_markdown_section(time_series_df, plots)