From 86767b0fca647dc0726f42b9ae4bc2a6fa5a33de Mon Sep 17 00:00:00 2001 From: Heng Guo Date: Wed, 8 Jan 2025 09:36:53 +0800 Subject: [PATCH] support to export gguf q4_0 and q4_1 format (#393) --- .../codeScan/codespell/autoround_dict.txt | 1 + auto_round/__main__.py | 12 +- auto_round/autoround.py | 8 + auto_round/export/__init__.py | 5 + auto_round/export/export_to_gguf/__init__.py | 13 + auto_round/export/export_to_gguf/convert.py | 4465 +++++++++++++++++ auto_round/export/export_to_gguf/export.py | 78 + auto_round/export/export_to_gguf/quant.py | 101 + auto_round/script/llm.py | 94 +- pyproject.toml | 2 + test/test_export.py | 3 +- test_cuda/test_gguf.py | 73 + 12 files changed, 4827 insertions(+), 28 deletions(-) create mode 100644 .azure-pipelines/scripts/codeScan/codespell/autoround_dict.txt create mode 100644 auto_round/export/export_to_gguf/__init__.py create mode 100644 auto_round/export/export_to_gguf/convert.py create mode 100644 auto_round/export/export_to_gguf/export.py create mode 100644 auto_round/export/export_to_gguf/quant.py create mode 100644 pyproject.toml create mode 100644 test_cuda/test_gguf.py diff --git a/.azure-pipelines/scripts/codeScan/codespell/autoround_dict.txt b/.azure-pipelines/scripts/codeScan/codespell/autoround_dict.txt new file mode 100644 index 00000000..41b7edde --- /dev/null +++ b/.azure-pipelines/scripts/codeScan/codespell/autoround_dict.txt @@ -0,0 +1 @@ +endianess \ No newline at end of file diff --git a/auto_round/__main__.py b/auto_round/__main__.py index 537db971..ec4026fd 100644 --- a/auto_round/__main__.py +++ b/auto_round/__main__.py @@ -14,9 +14,15 @@ import sys def run_eval(): - from auto_round.script.llm import setup_eval_parser, eval - args = setup_eval_parser() - eval(args) + if "--native" in sys.argv: + sys.argv.remove("--native") + from auto_round.script.llm import setup_eval_parser, eval + args = setup_eval_parser() + eval(args) + else: + from auto_round.script.llm import setup_eval_parser, eval_sequence + args = setup_eval_parser() + eval_sequence(args) def run(): if "--eval" in sys.argv: diff --git a/auto_round/autoround.py b/auto_round/autoround.py index 68ff8b1f..945cb016 100644 --- a/auto_round/autoround.py +++ b/auto_round/autoround.py @@ -1267,6 +1267,14 @@ def save_quantized(self, output_dir=None, format="auto_round", inplace=True, **k if processor is not None: processor.save_pretrained(output_dir) return + if format in ["gguf:q4_0", "gguf:q4_1"]: + if self.group_size != 32: + logger.error(f"{format} need group_size=32, but it is {self.group_size}, cannot export.") + return + if format == "gguf:q4_0" and not self.sym: + logger.warning(f"incorrect format choose, will reset to gguf:q4_1") + if format == "gguf:q4_1" and self.sym: + logger.warning(f"incorrect format choose, will reset to gguf:q4_0") from auto_round.export import EXPORT_FORMAT backend = format diff --git a/auto_round/export/__init__.py b/auto_round/export/__init__.py index 149ede56..05e82506 100644 --- a/auto_round/export/__init__.py +++ b/auto_round/export/__init__.py @@ -48,3 +48,8 @@ def _save_quantized_as_autoawq(*args, **kwargs): from auto_round.export.export_to_awq.export import save_quantized_as_autoawq return save_quantized_as_autoawq(*args, **kwargs) + +@register_format("gguf") +def _save_quantized_as_autoawq(*args, **kwargs): + from auto_round.export.export_to_gguf.export import save_quantized_as_gguf + return save_quantized_as_gguf(*args, **kwargs) \ No newline at end of file diff --git a/auto_round/export/export_to_gguf/__init__.py b/auto_round/export/export_to_gguf/__init__.py new file mode 100644 index 00000000..28f108cb --- /dev/null +++ b/auto_round/export/export_to_gguf/__init__.py @@ -0,0 +1,13 @@ +# Copyright (c) 2024 Intel Corporation +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. diff --git a/auto_round/export/export_to_gguf/convert.py b/auto_round/export/export_to_gguf/convert.py new file mode 100644 index 00000000..0e92d57f --- /dev/null +++ b/auto_round/export/export_to_gguf/convert.py @@ -0,0 +1,4465 @@ +# Copyright (c) 2024 Intel Corporation +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Copyright (c) 2023-2024 The ggml authors +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. + + +from __future__ import annotations + +import ast +import logging +import argparse +import contextlib +import json +import os +import re +import sys +from enum import IntEnum +from pathlib import Path +from hashlib import sha256 +from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast +from itertools import chain + +import math +import numpy as np +import torch + +if TYPE_CHECKING: + from torch import Tensor + +from auto_round.utils import logger, LazyImport +from .quant import ggml_quant +gguf = LazyImport("gguf") + + +###### MODEL DEFINITIONS ###### + +class SentencePieceTokenTypes(IntEnum): + NORMAL = 1 + UNKNOWN = 2 + CONTROL = 3 + USER_DEFINED = 4 + UNUSED = 5 + BYTE = 6 + + +AnyModel = TypeVar("AnyModel", bound="type[Model]") + + +class Model: + _model_classes: dict[str, type[Model]] = {} + + dir_model: Path + ftype: gguf.LlamaFileType + fname_out: Path + is_big_endian: bool + endianness: gguf.GGUFEndian + use_temp_file: bool + lazy: bool + part_names: list[str] + is_safetensors: bool + hparams: dict[str, Any] + block_count: int + tensor_map: gguf.TensorNameMap + tensor_names: set[str] | None + gguf_writer: gguf.GGUFWriter + model_name: str | None + metadata_override: Path | None + dir_model_card: Path + + # subclasses should define this! + model_arch: gguf.MODEL_ARCH + + def __init__(self, model, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False, + layer_config = None, use_temp_file: bool = False, eager: bool = False, + metadata_override: Path | None = None, model_name: str | None = None, + split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, + small_first_shard: bool = False, hparams: dict[str, Any] | None = None): + if type(self) is Model: + raise TypeError(f"{type(self).__name__!r} should not be directly instantiated") + + self.model = model + self.dir_model = dir_model + self.ftype = ftype + self.fname_out = fname_out + self.layer_config = layer_config + self.is_big_endian = is_big_endian + self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE + self.use_temp_file = use_temp_file + self.lazy = not eager + self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors") + self.is_safetensors = len(self.part_names) > 0 + if not self.is_safetensors: + self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin") + self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams + self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"]) + self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count) + self.tensor_names = None + self.metadata_override = metadata_override + self.model_name = model_name + self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py + + # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type + if self.ftype == gguf.LlamaFileType.GUESSED: + # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie. + _, first_tensor = next(self.get_tensors()) + if first_tensor.dtype == torch.float16: + logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})") + self.ftype = gguf.LlamaFileType.MOSTLY_F16 + else: + logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})") + self.ftype = gguf.LlamaFileType.MOSTLY_BF16 + + # Configure GGUF Writer + self.gguf_writer = gguf.GGUFWriter( + path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], + endianess=self.endianess, use_temp_file=self.use_temp_file, + split_max_tensors=split_max_tensors, split_max_size=split_max_size, + dry_run=dry_run, small_first_shard=small_first_shard) + + @classmethod + def __init_subclass__(cls): + # can't use an abstract property, because overriding it without type errors + # would require using decorated functions instead of simply defining the property + if "model_arch" not in cls.__dict__: + raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}") + + def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any: + key = next((k for k in keys if k in self.hparams), None) + if key is not None: + return self.hparams[key] + if optional: + return None + raise KeyError(f"could not find any of: {keys}") + + def set_vocab(self): + self._set_vocab_gpt2() + + def get_tensors(self) -> Iterator[tuple[str, Tensor]]: + for name, tensor in self.model.named_parameters(): + yield name, tensor + + + def format_tensor_name( + self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str: + if key not in gguf.MODEL_TENSORS[self.model_arch]: + raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}") + name: str = gguf.TENSOR_NAMES[key] + if "{bid}" in name: + assert bid is not None + name = name.format(bid=bid) + return name + suffix + + def match_model_tensor_name( + self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool: + if key not in gguf.MODEL_TENSORS[self.model_arch]: + return False + key_name: str = gguf.TENSOR_NAMES[key] + if "{bid}" in key_name: + if bid is None: + return False + key_name = key_name.format(bid=bid) + else: + if bid is not None: + return False + return name == (key_name + suffix) + + def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str: + new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes) + if new_name is None: + raise ValueError(f"Can not map tensor {name!r}") + return new_name + + def set_gguf_parameters(self): + self.gguf_writer.add_block_count(self.block_count) + + if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None: + self.gguf_writer.add_context_length(n_ctx) + logger.info(f"gguf: context length = {n_ctx}") + + n_embd = self.find_hparam(["hidden_size", "n_embd"]) + self.gguf_writer.add_embedding_length(n_embd) + logger.info(f"gguf: embedding length = {n_embd}") + + if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None: + self.gguf_writer.add_feed_forward_length(n_ff) + logger.info(f"gguf: feed forward length = {n_ff}") + + n_head = self.find_hparam(["num_attention_heads", "n_head"]) + self.gguf_writer.add_head_count(n_head) + logger.info(f"gguf: head count = {n_head}") + + if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None: + self.gguf_writer.add_head_count_kv(n_head_kv) + logger.info(f"gguf: key-value head count = {n_head_kv}") + + if (rope_theta := self.hparams.get("rope_theta")) is not None: + self.gguf_writer.add_rope_freq_base(rope_theta) + logger.info(f"gguf: rope theta = {rope_theta}") + if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None: + self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps) + logger.info(f"gguf: rms norm epsilon = {f_rms_eps}") + if (f_norm_eps := self.find_hparam( + ["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None: + self.gguf_writer.add_layer_norm_eps(f_norm_eps) + logger.info(f"gguf: layer norm epsilon = {f_norm_eps}") + if (n_experts := self.hparams.get("num_local_experts")) is not None: + self.gguf_writer.add_expert_count(n_experts) + logger.info(f"gguf: expert count = {n_experts}") + if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None: + self.gguf_writer.add_expert_used_count(n_experts_used) + logger.info(f"gguf: experts used count = {n_experts_used}") + + if (head_dim := self.hparams.get("head_dim")) is not None: + self.gguf_writer.add_key_length(head_dim) + self.gguf_writer.add_value_length(head_dim) + + self.gguf_writer.add_file_type(self.ftype) + logger.info(f"gguf: file type = {self.ftype}") + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + return [(self.map_tensor_name(name), data_torch)] + + def tensor_force_quant( + self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool: + del name, new_name, bid, n_dims # unused + + return False + + # some models need extra generated tensors (like rope_freqs) + def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: + return () + + def prepare_tensors(self): + max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,") + + for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()): + # we don't need these + if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")): + continue + + old_dtype = data_torch.dtype + + # convert any unsupported data types to float32 + if data_torch.dtype not in (torch.float16, torch.float32): + data_torch = data_torch.to(torch.float32) + + # use the first number-like part of the tensor name as the block id + bid = None + for part in name.split("."): + if part.isdecimal(): + bid = int(part) + break + + for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)): + data = data_torch.squeeze().numpy() + + # if data ends up empty, it means data_torch was a scalar tensor -> restore + if len(data.shape) == 0: + data = data_torch.numpy() + + n_dims = len(data.shape) + data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims) + + # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors + if n_dims <= 1 or new_name.endswith("_norm.weight"): + data_qtype = gguf.GGMLQuantizationType.F32 + + # Conditions should closely match those in llama_model_quantize_internal in llama.cpp + # Some tensor types are always in float32 + if data_qtype is False and ( + any( + self.match_model_tensor_name(new_name, key, bid) + for key in ( + gguf.MODEL_TENSOR.FFN_GATE_INP, + gguf.MODEL_TENSOR.POS_EMBD, + gguf.MODEL_TENSOR.TOKEN_TYPES, + gguf.MODEL_TENSOR.SSM_CONV1D, + gguf.MODEL_TENSOR.TIME_MIX_FIRST, + gguf.MODEL_TENSOR.TIME_MIX_W1, + gguf.MODEL_TENSOR.TIME_MIX_W2, + gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1, + gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2, + ) + ) + or not new_name.endswith(".weight") + ): + data_qtype = gguf.GGMLQuantizationType.F32 + + if data_qtype is False and any( + self.match_model_tensor_name(new_name, key, bid) + for key in ( + gguf.MODEL_TENSOR.TOKEN_EMBD, + gguf.MODEL_TENSOR.OUTPUT, + ) + ): + if self.ftype in ( + gguf.LlamaFileType.MOSTLY_TQ1_0, + gguf.LlamaFileType.MOSTLY_TQ2_0, + ): + # TODO: use Q4_K and Q6_K + data_qtype = gguf.GGMLQuantizationType.F16 + # data_qtype = gguf.GGMLQuantizationType.Q8_0 # llama.cpp:llama_tensor_get_type + + + + # No override (data_qtype is False), or wants to be quantized (data_qtype is True) + if isinstance(data_qtype, bool): + if self.ftype == gguf.LlamaFileType.ALL_F32: + data_qtype = gguf.GGMLQuantizationType.F32 + elif self.ftype == gguf.LlamaFileType.MOSTLY_F16: + data_qtype = gguf.GGMLQuantizationType.F16 + elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16: + data_qtype = gguf.GGMLQuantizationType.BF16 + # elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0: + # data_qtype = gguf.GGMLQuantizationType.Q8_0 + # elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0: + # data_qtype = gguf.GGMLQuantizationType.TQ1_0 + # elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0: + # data_qtype = gguf.GGMLQuantizationType.TQ2_0 + elif self.ftype == gguf.LlamaFileType.MOSTLY_Q4_0: + data_qtype = gguf.GGMLQuantizationType.Q4_0 + elif self.ftype == gguf.LlamaFileType.MOSTLY_Q4_1: + data_qtype = gguf.GGMLQuantizationType.Q4_1 + else: + raise ValueError(f"Unknown file type: {self.ftype.name}") + + # try: + # data = gguf.quants.quantize(data, data_qtype) + # except gguf.QuantError as e: + # logger.warning("%s, %s", e, "falling back to F16") + # data_qtype = gguf.GGMLQuantizationType.F16 + # data = gguf.quants.quantize(data, data_qtype) + + # TODO: Quant here + suffix = '.weight' + if suffix in name and name[:-len(suffix)] in self.layer_config: + layer_name = name[:-len(suffix)] + if "scale" in self.layer_config[layer_name]: + scale = self.layer_config[layer_name]['scale'].numpy() + zp = self.layer_config[layer_name]['zp'].numpy() + data = ggml_quant(data, data_qtype.name.lower(), scale, zp) + else: + data_qtype = gguf.GGMLQuantizationType.F32 + else: + data_qtype = gguf.GGMLQuantizationType.F32 + + shape = gguf.quant_shape_from_byte_shape( + data.shape, data_qtype) if data.dtype == np.uint8 else data.shape + + # reverse shape to make it similar to the internal ggml dimension order + shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}" + + + # n_dims is implicit in the shape + logger.info( + f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype}" + f" --> {data_qtype.name}, shape = {shape_str}") + + self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype) + + def set_type(self): + self.gguf_writer.add_type(gguf.GGUFType.MODEL) + + def prepare_metadata(self, vocab_only: bool): + + total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count() + + self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params) + + # Fallback to model directory name if metadata name is still missing + if self.metadata.name is None: + self.metadata.name = self.dir_model.name + + # Generate parameter weight class (useful for leader boards) if not yet determined + if self.metadata.size_label is None and total_params > 0: + self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count) + + # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0' + output_type: str = self.ftype.name.partition("_")[2] + + # Filename Output + if self.fname_out.is_dir(): + # Generate default filename based on model specification and available metadata + if not vocab_only: + fname_default: str = gguf.naming_convention( + self.metadata.name, self.metadata.basename, self.metadata.finetune, + self.metadata.version, self.metadata.size_label, output_type, + model_type="LoRA" if total_params < 0 else None) + else: + fname_default: str = gguf.naming_convention( + self.metadata.name, self.metadata.basename, self.metadata.finetune, + self.metadata.version, size_label=None, output_type=None, model_type="vocab") + + # Use the default filename + self.fname_out = self.fname_out / f"{fname_default}.gguf" + else: + # Output path is a custom defined templated filename + # Note: `not is_dir()` is used because `.is_file()` will not detect + # file template strings as it doesn't actually exist as a file + + # Process templated file name with the output ftype, useful with the "auto" ftype + self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type) + + self.set_type() + + logger.info("Set meta model") + self.metadata.set_gguf_meta_model(self.gguf_writer) + + logger.info("Set model parameters") + self.set_gguf_parameters() + + logger.info("Set model tokenizer") + self.set_vocab() + + logger.info("Set model quantization version") + self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION) + + def write(self): + self.prepare_tensors() + self.prepare_metadata(vocab_only=False) + self.gguf_writer.write_header_to_file(path=self.fname_out) + self.gguf_writer.write_kv_data_to_file() + self.gguf_writer.write_tensors_to_file(progress=True) + self.gguf_writer.close() + + def write_vocab(self): + if len(self.gguf_writer.tensors) != 1: + raise ValueError('Splitting the vocabulary is not supported') + + self.prepare_metadata(vocab_only=True) + self.gguf_writer.write_header_to_file(path=self.fname_out) + self.gguf_writer.write_kv_data_to_file() + self.gguf_writer.close() + + @staticmethod + def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]: + part_names: list[str] = [] + for filename in os.listdir(dir_model): + if filename.startswith(prefix) and filename.endswith(suffix): + part_names.append(filename) + + part_names.sort() + + return part_names + + @staticmethod + def load_hparams(dir_model: Path): + with open(dir_model / "config.json", "r", encoding="utf-8") as f: + return json.load(f) + + @classmethod + def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]: + assert names + + def func(modelcls: AnyModel) -> AnyModel: + for name in names: + cls._model_classes[name] = modelcls + return modelcls + return func + + @classmethod + def from_model_architecture(cls, arch: str) -> type[Model]: + try: + return cls._model_classes[arch] + except KeyError: + raise NotImplementedError(f'Architecture {arch!r} not supported!') from None + + def does_token_look_special(self, token: str | bytes) -> bool: + if isinstance(token, (bytes, bytearray)): + token_text = token.decode(encoding="utf-8") + elif isinstance(token, memoryview): + token_text = token.tobytes().decode(encoding="utf-8") + else: + token_text = token + + # Some models mark some added tokens which ought to be control tokens as not special. + # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2}) + seems_special = token_text in ( + "", # deepseek-coder + "", "<2mass>", "[@BOS@]", # gemma{,-2} + ) + + seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) + seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder + + # TODO: should these be marked as UNUSED instead? (maybe not) + seems_special = seems_special or (token_text.startswith("")) # gemma{,-2} + + return seems_special + + # used for GPT-2 BPE and WordPiece vocabs + def get_vocab_base(self) -> tuple[list[str], list[int], str]: + tokens: list[str] = [] + toktypes: list[int] = [] + + from transformers import AutoTokenizer + tokenizer = AutoTokenizer.from_pretrained(self.dir_model) + vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab)) + assert max(tokenizer.vocab.values()) < vocab_size + + tokpre = self.get_vocab_base_pre(tokenizer) + + reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} + added_vocab = tokenizer.get_added_vocab() + + for i in range(vocab_size): + if i not in reverse_vocab: + tokens.append(f"[PAD{i}]") + toktypes.append(gguf.TokenType.UNUSED) + else: + token: str = reverse_vocab[i] + if token in added_vocab: + if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token): + toktypes.append(gguf.TokenType.CONTROL) + else: + token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces + toktypes.append(gguf.TokenType.USER_DEFINED) + else: + toktypes.append(gguf.TokenType.NORMAL) + tokens.append(token) + + return tokens, toktypes, tokpre + + # NOTE: this function is generated by convert_hf_to_gguf_update.py + # do not modify it manually! + # ref: https://github.com/ggerganov/llama.cpp/pull/6920 + # Marker: Start get_vocab_base_pre + def get_vocab_base_pre(self, tokenizer) -> str: + # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that + # is specific for the BPE pre-tokenizer used by the model + # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can + # use in llama.cpp to implement the same pre-tokenizer + + chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal)' \ + +' 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333' \ + +' 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~' \ + +' ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been' \ + +' \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL' + + chktok = tokenizer.encode(chktxt) + chkhsh = sha256(str(chktok).encode()).hexdigest() + + logger.debug(f"chktok: {chktok}") + logger.debug(f"chkhsh: {chkhsh}") + + res = None + + # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script + # or pull the latest version of the model from Huggingface + # don't edit the hashes manually! + if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5": + # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B + res = "llama-bpe" + if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754": + # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base + res = "deepseek-llm" + if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821": + # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base + res = "deepseek-coder" + if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed": + # ref: https://huggingface.co/tiiuae/falcon-7b + res = "falcon" + if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": + # ref: https://huggingface.co/BAAI/bge-small-en-v1.5 + res = "bert-bge" + if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7": + # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5 + res = "bert-bge-large" + if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166": + # ref: https://huggingface.co/mosaicml/mpt-7b + res = "mpt" + if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34": + # ref: https://huggingface.co/bigcode/starcoder2-3b + res = "starcoder" + if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454": + # ref: https://huggingface.co/openai-community/gpt2 + res = "gpt-2" + if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3": + # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b + res = "stablelm2" + if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff": + # ref: https://huggingface.co/smallcloudai/Refact-1_6-base + res = "refact" + if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8": + # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01 + res = "command-r" + if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea": + # ref: https://huggingface.co/Qwen/Qwen1.5-7B + res = "qwen2" + if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166": + # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf + res = "olmo" + if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e": + # ref: https://huggingface.co/databricks/dbrx-base + res = "dbrx" + if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448": + # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en + res = "jina-v1-en" + if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": + # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en + res = "jina-v2-en" + if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643": + # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es + res = "jina-v2-es" + if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6": + # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de + res = "jina-v2-de" + if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d": + # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct + res = "smaug-bpe" + if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360": + # ref: https://huggingface.co/LumiOpen/Poro-34B-chat + res = "poro-chat" + if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a": + # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code + res = "jina-v2-code" + if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b": + # ref: https://huggingface.co/THUDM/glm-4-9b-chat + res = "chatglm-bpe" + if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee": + # ref: https://huggingface.co/LumiOpen/Viking-7B + res = "viking" + if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901": + # ref: https://huggingface.co/core42/jais-13b + res = "jais" + if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f": + # ref: https://huggingface.co/WisdomShell/CodeShell-7B + res = "codeshell" + if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e": + # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407 + res = "tekken" + if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249": + # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M + res = "smollm" + if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7": + # ref: https://huggingface.co/bigscience/bloom + res = "bloom" + if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21": + # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small + res = "gpt3-finnish" + if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae": + # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct + res = "exaone" + if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085": + # ref: https://huggingface.co/microsoft/phi-2 + res = "phi-2" + if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450": + # ref: https://huggingface.co/facebook/chameleon-7b + res = "chameleon" + + if res is None: + logger.warning("\n") + logger.warning("**************************************************************************************") + logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!") + logger.warning("** There are 2 possible reasons for this:") + logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet") + logger.warning("** - the pre-tokenization config has changed upstream") + logger.warning( + "** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.") + logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920") + logger.warning("**") + logger.warning(f"** chkhsh: {chkhsh}") + logger.warning("**************************************************************************************") + logger.warning("\n") + raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()") + + logger.debug(f"tokenizer.ggml.pre: {repr(res)}") + logger.debug(f"chkhsh: {chkhsh}") + + return res + # Marker: End get_vocab_base_pre + + def _set_vocab_gpt2(self) -> None: + tokens, toktypes, tokpre = self.get_vocab_base() + self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True) + special_vocab.add_to_gguf(self.gguf_writer) + + def _set_vocab_qwen(self): + dir_model = self.dir_model + hparams = self.hparams + tokens: list[str] = [] + toktypes: list[int] = [] + + from transformers import AutoTokenizer + tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) + vocab_size = hparams["vocab_size"] + assert max(tokenizer.get_vocab().values()) < vocab_size + + tokpre = self.get_vocab_base_pre(tokenizer) + + merges = [] + vocab = {} + mergeable_ranks = tokenizer.mergeable_ranks + for token, rank in mergeable_ranks.items(): + vocab[QwenModel.token_bytes_to_string(token)] = rank + if len(token) == 1: + continue + merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank) + assert len(merged) == 2 + merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged))) + + # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined + added_vocab = tokenizer.special_tokens + reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()} + + for i in range(vocab_size): + if i not in reverse_vocab: + tokens.append(f"[PAD{i}]") + toktypes.append(gguf.TokenType.UNUSED) + elif reverse_vocab[i] in added_vocab: + tokens.append(reverse_vocab[i]) + toktypes.append(gguf.TokenType.CONTROL) + else: + tokens.append(reverse_vocab[i]) + toktypes.append(gguf.TokenType.NORMAL) + + self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(dir_model, load_merges=False) + special_vocab.merges = merges + # only add special tokens when they were not already loaded from config.json + if len(special_vocab.special_token_ids) == 0: + special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"]) + special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"]) + # this one is usually not in config.json anyway + special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"]) + special_vocab.add_to_gguf(self.gguf_writer) + + def _set_vocab_sentencepiece(self, add_to_gguf=True): + tokens, scores, toktypes = self._create_vocab_sentencepiece() + + self.gguf_writer.add_tokenizer_model("llama") + self.gguf_writer.add_tokenizer_pre("default") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + + def _create_vocab_sentencepiece(self): + from sentencepiece import SentencePieceProcessor + + tokenizer_path = self.dir_model / 'tokenizer.model' + + if not tokenizer_path.is_file(): + raise FileNotFoundError(f"File not found: {tokenizer_path}") + + tokenizer = SentencePieceProcessor() + tokenizer.LoadFromFile(str(tokenizer_path)) + + vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) + + tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] + scores: list[float] = [-10000.0] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size + + for token_id in range(tokenizer.vocab_size()): + piece = tokenizer.IdToPiece(token_id) + text = piece.encode("utf-8") + score = tokenizer.GetScore(token_id) + + toktype = SentencePieceTokenTypes.NORMAL + if tokenizer.IsUnknown(token_id): + toktype = SentencePieceTokenTypes.UNKNOWN + elif tokenizer.IsControl(token_id): + toktype = SentencePieceTokenTypes.CONTROL + elif tokenizer.IsUnused(token_id): + toktype = SentencePieceTokenTypes.UNUSED + elif tokenizer.IsByte(token_id): + toktype = SentencePieceTokenTypes.BYTE + + tokens[token_id] = text + scores[token_id] = score + toktypes[token_id] = toktype + + added_tokens_file = self.dir_model / 'added_tokens.json' + if added_tokens_file.is_file(): + with open(added_tokens_file, "r", encoding="utf-8") as f: + added_tokens_json = json.load(f) + for key in added_tokens_json: + token_id = added_tokens_json[key] + if token_id >= vocab_size: + logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') + continue + + tokens[token_id] = key.encode("utf-8") + scores[token_id] = -1000.0 + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + + tokenizer_config_file = self.dir_model / 'tokenizer_config.json' + if tokenizer_config_file.is_file(): + with open(tokenizer_config_file, "r", encoding="utf-8") as f: + tokenizer_config_json = json.load(f) + added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {}) + for token_id, token_data in added_tokens_decoder.items(): + token_id = int(token_id) + token: str = token_data["content"] + if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: + if tokens[token_id] != token.encode("utf-8"): + logger.warning( + f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}') + if token_data.get("special") or self.does_token_look_special(token): + toktypes[token_id] = SentencePieceTokenTypes.CONTROL + else: + token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + + scores[token_id] = -1000.0 + tokens[token_id] = token.encode("utf-8") + + if vocab_size > len(tokens): + pad_count = vocab_size - len(tokens) + logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") + for i in range(1, pad_count + 1): + tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) + scores.append(-1000.0) + toktypes.append(SentencePieceTokenTypes.UNUSED) + + return tokens, scores, toktypes + + def _set_vocab_llama_hf(self): + vocab = gguf.LlamaHfVocab(self.dir_model) + tokens = [] + scores = [] + toktypes = [] + + for text, score, toktype in vocab.all_tokens(): + tokens.append(text) + scores.append(score) + toktypes.append(toktype) + + assert len(tokens) == vocab.vocab_size + + self.gguf_writer.add_tokenizer_model("llama") + self.gguf_writer.add_tokenizer_pre("default") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + + def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int): + tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf" + logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'") + vocab_reader = gguf.GGUFReader(tokenizer_path, "r") + + default_pre = "mpt" if model_name == "gpt-neox" else "default" + + field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL) + assert field # tokenizer model + self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8")) + + field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE) + self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre) + + field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST) + assert field # token list + self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size]) + + if model_name == "llama-spm": + field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES) + assert field # token scores + self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size]) + + field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE) + assert field # token types + self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size]) + + if model_name != "llama-spm": + field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES) + assert field # token merges + self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data]) + + if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None: + self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0]) + if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None: + self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0]) + if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None: + self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0]) + if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None: + self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0]) + if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None: + self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0]) + if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None: + self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0]) + + +@Model.register("GPTNeoXForCausalLM") +class GPTNeoXModel(Model): + model_arch = gguf.MODEL_ARCH.GPTNEOX + + def set_gguf_parameters(self): + block_count = self.hparams["num_hidden_layers"] + + self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) + self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) + self.gguf_writer.add_rope_dimension_count( + int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])), + ) + self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) + self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True)) + self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"]) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) + n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) + + tensors: list[tuple[str, Tensor]] = [] + + if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name): + qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed)) + data_torch = torch.cat( + ( + qkv_weights[:, 0, :, :].reshape((-1, n_embed)), + qkv_weights[:, 1, :, :].reshape((-1, n_embed)), + qkv_weights[:, 2, :, :].reshape((-1, n_embed)), + ), + dim=0, + ) + logger.info("re-format attention.linear_qkv.weight") + elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name): + qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head)) + data_torch = torch.cat( + ( + qkv_bias[:, 0, :].reshape((n_embed,)), + qkv_bias[:, 1, :].reshape((n_embed,)), + qkv_bias[:, 2, :].reshape((n_embed,)), + ), + dim=0, + ) + logger.info("re-format attention.linear_qkv.bias") + + tensors.append((self.map_tensor_name(name), data_torch)) + + return tensors + + +@Model.register("BloomForCausalLM", "BloomModel") +class BloomModel(Model): + model_arch = gguf.MODEL_ARCH.BLOOM + + def set_gguf_parameters(self): + n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) + n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) + self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed)) + self.gguf_writer.add_embedding_length(n_embed) + self.gguf_writer.add_feed_forward_length(4 * n_embed) + self.gguf_writer.add_block_count(self.hparams["n_layer"]) + self.gguf_writer.add_head_count(n_head) + self.gguf_writer.add_head_count_kv(n_head) + self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_file_type(self.ftype) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) + n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) + + name = re.sub(r'transformer\.', '', name) + + tensors: list[tuple[str, Tensor]] = [] + + if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name): + qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed)) + data_torch = torch.cat( + ( + qkv_weights[:, 0, :, :].reshape((-1, n_embed)), + qkv_weights[:, 1, :, :].reshape((-1, n_embed)), + qkv_weights[:, 2, :, :].reshape((-1, n_embed)), + ), + dim=0, + ) + logger.info("re-format attention.linear_qkv.weight") + elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name): + qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head)) + data_torch = torch.cat( + ( + qkv_bias[:, 0, :].reshape((n_embed,)), + qkv_bias[:, 1, :].reshape((n_embed,)), + qkv_bias[:, 2, :].reshape((n_embed,)), + ), + dim=0, + ) + logger.info("re-format attention.linear_qkv.bias") + + tensors.append((self.map_tensor_name(name), data_torch)) + + if name == "word_embeddings.weight": + assert self.tensor_names is not None + + # TODO: tie them at runtime, don't duplicate in the model file + if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")): # pylint: disable=E1135 + tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch)) + + return tensors + + +@Model.register("MPTForCausalLM") +class MPTModel(Model): + model_arch = gguf.MODEL_ARCH.MPT + + def set_vocab(self): + try: + self._set_vocab_gpt2() + except Exception: + # Fallback for SEA-LION model + self._set_vocab_sentencepiece() + self.gguf_writer.add_add_bos_token(False) + self.gguf_writer.add_pad_token_id(3) + self.gguf_writer.add_eos_token_id(1) + self.gguf_writer.add_unk_token_id(0) + + def set_gguf_parameters(self): + block_count = self.hparams["n_layers"] + self.gguf_writer.add_context_length(self.hparams["max_seq_len"]) + self.gguf_writer.add_embedding_length(self.hparams["d_model"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"]) + self.gguf_writer.add_head_count(self.hparams["n_heads"]) + if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"): + self.gguf_writer.add_head_count_kv(kv_n_heads) + self.gguf_writer.add_layer_norm_eps(1e-5) + if self.hparams["attn_config"]["clip_qkv"] is not None: + self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"]) + if self.hparams["attn_config"]["alibi"]: + self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"]) + else: + self.gguf_writer.add_max_alibi_bias(0.0) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + if "scales" in name: + new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales")) + new_name = new_name.replace("scales", "act.scales") + else: + new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias")) + + return [(new_name, data_torch)] + + +@Model.register("OrionForCausalLM") +class OrionModel(Model): + model_arch = gguf.MODEL_ARCH.ORION + + def set_vocab(self): + self._set_vocab_sentencepiece() + + def set_gguf_parameters(self): + block_count = self.hparams["num_hidden_layers"] + head_count = self.hparams["num_attention_heads"] + head_count_kv = self.hparams.get("num_key_value_heads", head_count) + + ctx_length = 0 + if "max_sequence_length" in self.hparams: + ctx_length = self.hparams["max_sequence_length"] + elif "max_position_embeddings" in self.hparams: + ctx_length = self.hparams["max_position_embeddings"] + elif "model_max_length" in self.hparams: + ctx_length = self.hparams["model_max_length"] + else: + raise ValueError("gguf: can not find ctx length parameter.") + + self.gguf_writer.add_file_type(self.ftype) + self.gguf_writer.add_tensor_data_layout("Meta AI original pth") + self.gguf_writer.add_context_length(ctx_length) + self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) + self.gguf_writer.add_head_count(head_count) + self.gguf_writer.add_head_count_kv(head_count_kv) + self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"]) + + +@Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM") +class BaichuanModel(Model): + model_arch = gguf.MODEL_ARCH.BAICHUAN + + def set_vocab(self): + self._set_vocab_sentencepiece() + + def set_gguf_parameters(self): + block_count = self.hparams["num_hidden_layers"] + head_count = self.hparams["num_attention_heads"] + head_count_kv = self.hparams.get("num_key_value_heads", head_count) + + ctx_length = 0 + if "max_sequence_length" in self.hparams: + ctx_length = self.hparams["max_sequence_length"] + elif "max_position_embeddings" in self.hparams: + ctx_length = self.hparams["max_position_embeddings"] + elif "model_max_length" in self.hparams: + ctx_length = self.hparams["model_max_length"] + else: + raise ValueError("gguf: can not find ctx length parameter.") + + self.gguf_writer.add_tensor_data_layout("Meta AI original pth") + self.gguf_writer.add_context_length(ctx_length) + self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) + self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + self.gguf_writer.add_head_count(head_count) + self.gguf_writer.add_head_count_kv(head_count_kv) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_file_type(self.ftype) + + if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: + if self.hparams["rope_scaling"].get("type") == "linear": + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + head_count = self.hparams["num_attention_heads"] + head_count_kv = self.hparams.get("num_key_value_heads", head_count) + + tensors: list[tuple[str, Tensor]] = [] + + if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight": + logger.info(f"Unpacking and permuting layer {bid}") + tensors = [ + (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), + self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)), + (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), + self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)), + (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), + self._reverse_hf_part(data_torch, 2)), + ] + else: + tensors = [(self.map_tensor_name(name), data_torch)] + + return tensors + + def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: + if n_kv_head is not None and n_head != n_kv_head: + n_head //= n_kv_head + + return ( + weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) + .swapaxes(1, 2) + .reshape(weights.shape) + ) + + def _reverse_hf_permute_part( + self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None, + ) -> Tensor: + r = weights.shape[0] // 3 + return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv) + + def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor: + r = weights.shape[0] // 3 + return weights[r * n_part:r * n_part + r, ...] + + +@Model.register("XverseForCausalLM") +class XverseModel(Model): + model_arch = gguf.MODEL_ARCH.XVERSE + + def set_vocab(self): + assert (self.dir_model / "tokenizer.json").is_file() + dir_model = self.dir_model + hparams = self.hparams + + tokens: list[bytes] = [] + toktypes: list[int] = [] + + from transformers import AutoTokenizer + tokenizer = AutoTokenizer.from_pretrained(dir_model) + vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) + # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size, + # because vocab_size is the count of items, and indexes start at 0. + max_vocab_index = max(tokenizer.get_vocab().values()) + if max_vocab_index >= vocab_size: + raise ValueError("Vocabulary size exceeds expected maximum size.") + + reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} + added_vocab = tokenizer.get_added_vocab() + + for token_id in range(vocab_size): + token_text = reverse_vocab[token_id].encode('utf-8') + # replace "\x00" to string with length > 0 + if token_text == b"\x00": + toktype = gguf.TokenType.BYTE # special + token_text = f"<{token_text}>".encode('utf-8') + elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text): + toktype = gguf.TokenType.BYTE # special + elif reverse_vocab[token_id] in added_vocab: + if tokenizer.added_tokens_decoder[token_id].special: + toktype = gguf.TokenType.CONTROL + else: + toktype = gguf.TokenType.USER_DEFINED + else: + toktype = gguf.TokenType.NORMAL + + tokens.append(token_text) + toktypes.append(toktype) + + self.gguf_writer.add_tokenizer_model("llama") + self.gguf_writer.add_tokenizer_pre("default") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + + def set_gguf_parameters(self): + block_count = self.hparams["num_hidden_layers"] + head_count = self.hparams["num_attention_heads"] + head_count_kv = self.hparams.get("num_key_value_heads", head_count) + + ctx_length = 0 + if "max_sequence_length" in self.hparams: + ctx_length = self.hparams["max_sequence_length"] + elif "max_position_embeddings" in self.hparams: + ctx_length = self.hparams["max_position_embeddings"] + elif "model_max_length" in self.hparams: + ctx_length = self.hparams["model_max_length"] + else: + raise ValueError("gguf: can not find ctx length parameter.") + + self.gguf_writer.add_tensor_data_layout("Meta AI original pth") + self.gguf_writer.add_context_length(ctx_length) + self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) + self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + self.gguf_writer.add_head_count(head_count) + self.gguf_writer.add_head_count_kv(head_count_kv) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_file_type(self.ftype) + + if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: + if self.hparams["rope_scaling"].get("type") == "linear": + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + head_count = self.hparams["num_attention_heads"] + head_count_kv = self.hparams.get("num_key_value_heads", head_count) + + # HF models permute some of the tensors, so we need to undo that + if name.endswith("q_proj.weight"): + data_torch = self._reverse_hf_permute(data_torch, head_count, head_count) + if name.endswith("k_proj.weight"): + data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv) + + return [(self.map_tensor_name(name), data_torch)] + + def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: + if n_kv_head is not None and n_head != n_kv_head: + n_head //= n_kv_head + + return ( + weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) + .swapaxes(1, 2) + .reshape(weights.shape) + ) + + +@Model.register("FalconForCausalLM", "RWForCausalLM") +class FalconModel(Model): + model_arch = gguf.MODEL_ARCH.FALCON + + def set_gguf_parameters(self): + block_count = self.hparams.get("num_hidden_layers") + if block_count is None: + block_count = self.hparams["n_layer"] # old name + + n_head = self.hparams.get("num_attention_heads") + if n_head is None: + n_head = self.hparams["n_head"] # old name + + n_head_kv = self.hparams.get("num_kv_heads") + if n_head_kv is None: + n_head_kv = self.hparams.get("n_head_kv", 1) # old name + + self.gguf_writer.add_context_length(2048) # not in config.json + self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform + self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) + self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_head_count(n_head) + self.gguf_writer.add_head_count_kv(n_head_kv) + self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_file_type(self.ftype) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + # QKV tensor transform + # The original query_key_value tensor contains n_head_kv "kv groups", + # each consisting of n_head/n_head_kv query weights followed by one key + # and one value weight (shared by all query heads in the kv group). + # This layout makes it a big pain to work with in GGML. + # So we rearrange them here,, so that we have n_head query weights + # followed by n_head_kv key weights followed by n_head_kv value weights, + # in contiguous fashion. + # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py + + if "query_key_value" in name: + n_head = self.find_hparam(["num_attention_heads", "n_head"]) + n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1 + head_dim = self.hparams["hidden_size"] // n_head + + qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head) + q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head) + k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head) + v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head) + data_torch = torch.cat((q, k, v)).reshape_as(data_torch) + + return [(self.map_tensor_name(name), data_torch)] + + +@Model.register("GPTBigCodeForCausalLM") +class StarCoderModel(Model): + model_arch = gguf.MODEL_ARCH.STARCODER + + def set_gguf_parameters(self): + block_count = self.hparams["n_layer"] + + self.gguf_writer.add_context_length(self.hparams["n_positions"]) + self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) + self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_head_count(self.hparams["n_head"]) + self.gguf_writer.add_head_count_kv(1) + self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_file_type(self.ftype) + + +@Model.register("GPTRefactForCausalLM") +class RefactModel(Model): + model_arch = gguf.MODEL_ARCH.REFACT + + def set_vocab(self): + super().set_vocab() + + # TODO: how to determine special FIM tokens automatically? + special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False, + special_token_types = ['prefix', 'suffix', 'middle', 'eot']) + special_vocab._set_special_token("prefix", 1) + special_vocab._set_special_token("suffix", 3) + special_vocab._set_special_token("middle", 2) + special_vocab.chat_template = None # do not add it twice + special_vocab.add_to_gguf(self.gguf_writer) + + def set_gguf_parameters(self): + hidden_dim = self.hparams["n_embd"] + inner_dim = 4 * hidden_dim + hidden_dim = int(2 * inner_dim / 3) + multiple_of = 256 + ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) + + block_count = self.hparams["n_layer"] + + # refact uses Alibi. So this is from config.json which might be used by training. + self.gguf_writer.add_context_length(self.hparams["n_positions"]) + self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) + + self.gguf_writer.add_feed_forward_length(ff_dim) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_head_count(self.hparams["n_head"]) + self.gguf_writer.add_head_count_kv(1) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_file_type(self.ftype) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + hidden_dim = self.hparams["n_embd"] + inner_dim = 4 * hidden_dim + hidden_dim = int(2 * inner_dim / 3) + multiple_of = 256 + ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) + n_head = self.hparams["n_head"] + n_head_kv = 1 + head_dim = self.hparams["n_embd"] // n_head + + tensors: list[tuple[str, Tensor]] = [] + + if bid is not None: + if name == f"transformer.h.{bid}.attn.kv.weight": + tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), + data_torch[:n_head_kv * head_dim])) + tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), + data_torch[n_head_kv * head_dim:])) + elif name == f"transformer.h.{bid}.attn.q.weight": + tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch)) + elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight": + tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])) + tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])) + + if len(tensors) == 0: + tensors.append((self.map_tensor_name(name), data_torch)) + + return tensors + + +@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM") +class StableLMModel(Model): + model_arch = gguf.MODEL_ARCH.STABLELM + + def set_vocab(self): + if (self.dir_model / "tokenizer.json").is_file(): + self._set_vocab_gpt2() + else: + # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab + self._set_vocab_qwen() + + def set_gguf_parameters(self): + hparams = self.hparams + block_count = hparams["num_hidden_layers"] + + self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) + self.gguf_writer.add_embedding_length(hparams["hidden_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) + rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"]) + self.gguf_writer.add_rope_dimension_count( + int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"]))) + self.gguf_writer.add_head_count(hparams["num_attention_heads"]) + self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"]) + self.gguf_writer.add_parallel_residual( + hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True) + self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"])) + self.gguf_writer.add_file_type(self.ftype) + + _q_norms: list[dict[str, Tensor]] | None = None + _k_norms: list[dict[str, Tensor]] | None = None + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + n_head = self.hparams["num_attention_heads"] + n_kv_head = self.hparams["num_key_value_heads"] + + if name.find("q_layernorm.norms") != -1: + assert bid is not None + + if self._q_norms is None: + self._q_norms = [{} for _ in range(self.block_count)] + + self._q_norms[bid][name] = data_torch + + if len(self._q_norms[bid]) >= n_head: + return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm") + else: + return [] + + if name.find("k_layernorm.norms") != -1: + assert bid is not None + + if self._k_norms is None: + self._k_norms = [{} for _ in range(self.block_count)] + + self._k_norms[bid][name] = data_torch + + if len(self._k_norms[bid]) >= n_kv_head: + return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm") + else: + return [] + + return [(self.map_tensor_name(name), data_torch)] + + def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"): + data: list[Tensor] = [] + # extract the norms in order + for xid in range(n_head): + ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight" + data.append(norms[ename]) + del norms[ename] + data_torch = torch.stack(data, dim=0) + + merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight" + new_name = self.map_tensor_name(merged_name) + + return [(new_name, data_torch)] + + def prepare_tensors(self): + super().prepare_tensors() + + if self._q_norms is not None or self._k_norms is not None: + # flatten two `list[dict[str, Tensor]]` into a single `list[str]` + norms = ( + [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else [] + ) + ( + [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else [] + ) + if len(norms) > 0: + raise ValueError(f"Unprocessed norms: {norms}") + + +@Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM") +class LlamaModel(Model): + model_arch = gguf.MODEL_ARCH.LLAMA + + def set_vocab(self): + try: + self._set_vocab_sentencepiece() + except FileNotFoundError: + try: + self._set_vocab_llama_hf() + except (FileNotFoundError, TypeError): + # Llama 3 + self._set_vocab_gpt2() + + # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256) + if self.hparams.get("vocab_size", 32000) == 32016: + special_vocab = gguf.SpecialVocab( + self.dir_model, load_merges=False, + special_token_types = ['prefix', 'suffix', 'middle', 'eot'] + ) + special_vocab._set_special_token("prefix", 32007) + special_vocab._set_special_token("suffix", 32008) + special_vocab._set_special_token("middle", 32009) + special_vocab._set_special_token("eot", 32010) + special_vocab.add_to_gguf(self.gguf_writer) + + tokenizer_config_file = self.dir_model / 'tokenizer_config.json' + if tokenizer_config_file.is_file(): + with open(tokenizer_config_file, "r", encoding="utf-8") as f: + tokenizer_config_json = json.load(f) + if "add_prefix_space" in tokenizer_config_json: + self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"]) + + # Apply to granite small models only + if self.hparams.get("vocab_size", 32000) == 49152: + self.gguf_writer.add_add_bos_token(False) + + def set_gguf_parameters(self): + super().set_gguf_parameters() + hparams = self.hparams + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + + if "head_dim" in hparams: + rope_dim = hparams["head_dim"] + else: + rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] + self.gguf_writer.add_rope_dimension_count(rope_dim) + + if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: + if self.hparams["rope_scaling"].get("type") == "linear": + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) + + @staticmethod + def permute(weights: Tensor, n_head: int, n_head_kv: int | None): + if n_head_kv is not None and n_head != n_head_kv: + n_head = n_head_kv + return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) + .swapaxes(1, 2) + .reshape(weights.shape)) + + _experts: list[dict[str, Tensor]] | None = None + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + n_head = self.hparams["num_attention_heads"] + n_kv_head = self.hparams.get("num_key_value_heads") + + if name.endswith(("q_proj.weight", "q_proj.bias")): + data_torch = LlamaModel.permute(data_torch, n_head, n_head) + if name.endswith(("k_proj.weight", "k_proj.bias")): + data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) + + # process the experts separately + if name.find("block_sparse_moe.experts") != -1: + n_experts = self.hparams["num_local_experts"] + + assert bid is not None + + if self._experts is None: + self._experts = [{} for _ in range(self.block_count)] + + self._experts[bid][name] = data_torch + + if len(self._experts[bid]) >= n_experts * 3: + tensors: list[tuple[str, Tensor]] = [] + + # merge the experts into a single 3d tensor + for wid in ["w1", "w2", "w3"]: + data: list[Tensor] = [] + + for xid in range(n_experts): + ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight" + data.append(self._experts[bid][ename]) + del self._experts[bid][ename] + + data_torch = torch.stack(data, dim=0) + + merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight" + + new_name = self.map_tensor_name(merged_name) + + tensors.append((new_name, data_torch)) + return tensors + else: + return [] + + return [(self.map_tensor_name(name), data_torch)] + + def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: + if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): + if rope_scaling.get("rope_type", '').lower() == "llama3": + base = self.hparams.get("rope_theta", 10000.0) + dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) + + factor = rope_scaling.get("factor", 8.0) + low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) + high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) + old_context_len = self.hparams.get("original_max_position_embeddings", 8192) + + low_freq_wavelen = old_context_len / low_freq_factor + high_freq_wavelen = old_context_len / high_freq_factor + assert low_freq_wavelen != high_freq_wavelen + + rope_factors = [] + for freq in freqs: + wavelen = 2 * math.pi / freq + if wavelen < high_freq_wavelen: + rope_factors.append(1) + elif wavelen > low_freq_wavelen: + rope_factors.append(factor) + else: + smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) + rope_factors.append(1 / ((1 - smooth) / factor + smooth)) + + yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), + torch.tensor(rope_factors, dtype=torch.float32)) + + def prepare_tensors(self): + super().prepare_tensors() + + if self._experts is not None: + # flatten `list[dict[str, Tensor]]` into `list[str]` + experts = [k for d in self._experts for k in d.keys()] + if len(experts) > 0: + raise ValueError(f"Unprocessed experts: {experts}") + + +@Model.register("BitnetForCausalLM") +class BitnetModel(Model): + model_arch = gguf.MODEL_ARCH.BITNET + + def set_vocab(self): + self._set_vocab_sentencepiece() + + def set_gguf_parameters(self): + super().set_gguf_parameters() + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(1.0) + + def weight_quant(self, weight: Tensor) -> Tensor: + dtype = weight.dtype + weight = weight.float() + scale = weight.abs().mean().clamp(min=1e-5) + iscale = 1 / scale + result = (weight * iscale).round().clamp(-1, 1) / iscale + return result.type(dtype) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + new_name = self.map_tensor_name(name) + + if any(self.match_model_tensor_name(new_name, key, bid) for key in [ + gguf.MODEL_TENSOR.ATTN_Q, + gguf.MODEL_TENSOR.ATTN_K, + gguf.MODEL_TENSOR.ATTN_V, + gguf.MODEL_TENSOR.ATTN_OUT, + gguf.MODEL_TENSOR.FFN_UP, + gguf.MODEL_TENSOR.FFN_DOWN, + gguf.MODEL_TENSOR.FFN_GATE, + ]): + # transform weight into 1/0/-1 (in fp32) + data_torch = self.weight_quant(data_torch) + + yield (new_name, data_torch) + + +@Model.register("GrokForCausalLM") +class GrokModel(Model): + model_arch = gguf.MODEL_ARCH.GROK + + def set_vocab(self): + self._set_vocab_sentencepiece() + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + def set_gguf_parameters(self): + super().set_gguf_parameters() + + _experts: list[dict[str, Tensor]] | None = None + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + # process the experts separately + if name.find(".moe.") != -1: + n_experts = self.hparams["num_local_experts"] + + assert bid is not None + + if self._experts is None: + self._experts = [{} for _ in range(self.block_count)] + + self._experts[bid][name] = data_torch + + if len(self._experts[bid]) >= n_experts * 3: + tensors: list[tuple[str, Tensor]] = [] + + # merge the experts into a single 3d tensor + for wid in ["linear", "linear_1", "linear_v"]: + data: list[Tensor] = [] + + for xid in range(n_experts): + ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight" + data.append(self._experts[bid][ename]) + del self._experts[bid][ename] + + data_torch = torch.stack(data, dim=0) + + merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight" + + new_name = self.map_tensor_name(merged_name) + + tensors.append((new_name, data_torch)) + return tensors + else: + return [] + + return [(self.map_tensor_name(name), data_torch)] + + +@Model.register("DbrxForCausalLM") +class DbrxModel(Model): + model_arch = gguf.MODEL_ARCH.DBRX + + def set_gguf_parameters(self): + ffn_config = self.hparams["ffn_config"] + attn_config = self.hparams["attn_config"] + self.gguf_writer.add_block_count(self.hparams["n_layers"]) + + self.gguf_writer.add_context_length(self.hparams["max_seq_len"]) + self.gguf_writer.add_embedding_length(self.hparams["d_model"]) + self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"]) + + self.gguf_writer.add_head_count(self.hparams["n_heads"]) + self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"]) + + self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"]) + + self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"]) + + self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"]) + self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"]) + + self.gguf_writer.add_layer_norm_eps(1e-5) + + self.gguf_writer.add_file_type(self.ftype) + logger.info(f"gguf: file type = {self.ftype}") + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + n_expert = self.hparams["ffn_config"]["moe_num_experts"] + n_ff = self.hparams["ffn_config"]["ffn_hidden_size"] + n_embd = self.hparams["d_model"] + + # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose + # original implementation expects (n_expert, n_ff, n_embd) for all experts weights + # But llama.cpp moe graph works differently + # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions + # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor + exp_tensor_names = { + "ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert} + "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert} + "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert} + experts = False + + for exp_tensor_name in exp_tensor_names.keys(): + if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1: + experts = True + data_torch = data_torch.view(n_expert, n_ff, n_embd) + if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None: + data_torch = data_torch.permute(*permute_tensor) + break + + # map tensor names + # In MoE models the ffn tensors are typically most of the model weights, + # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight. + # Every other model has the weight names ending in .weight, + # let's assume that is the convention which is not the case for dbrx: + # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15 + new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",)) + + return [(new_name, data_torch)] + + def tensor_force_quant( + self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool: + del name, new_name, bid # unused + + return n_dims > 1 + + +@Model.register("MiniCPMForCausalLM") +class MiniCPMModel(Model): + model_arch = gguf.MODEL_ARCH.MINICPM + + def set_gguf_parameters(self): + block_count = self.hparams["num_hidden_layers"] + self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) + self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) + self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) + self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_file_type(self.ftype) + + def set_vocab(self): + self._set_vocab_llama_hf() + + def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: + if n_kv_head is not None and n_head != n_kv_head: + n_head //= n_kv_head + + return ( + weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) + .swapaxes(1, 2) + .reshape(weights.shape) + ) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + n_head = self.hparams["num_attention_heads"] + n_kv_head = self.hparams.get("num_key_value_heads") + + # HF models permute some of the tensors, so we need to undo that + if name.endswith(("q_proj.weight")): + data_torch = self._reverse_hf_permute(data_torch, n_head, n_head) + if name.endswith(("k_proj.weight")): + data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head) + + return [(self.map_tensor_name(name), data_torch)] + + +@Model.register("MiniCPM3ForCausalLM") +class MiniCPM3Model(Model): + model_arch = gguf.MODEL_ARCH.MINICPM3 + + def set_gguf_parameters(self): + hparams = self.hparams + + self.gguf_writer.add_file_type(self.ftype) + self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) + self.gguf_writer.add_embedding_length(hparams["hidden_size"]) + self.gguf_writer.add_block_count(self.block_count) + self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) + self.gguf_writer.add_head_count(hparams["num_attention_heads"]) + self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"]) + self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None: + self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"]) + self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"]) + self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"]) + self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"]) + + def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: + rope_scaling = self.find_hparam(['rope_scaling'], True) + if rope_scaling is not None: + rope_dims = self.hparams["qk_rope_head_dim"] + + long_factors = rope_scaling.get('long_factor', None) + short_factors = rope_scaling.get('short_factor', None) + + if long_factors is None or short_factors is None: + raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor') + + if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2: + raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}') + + yield (self.format_tensor_name( + gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32)) + yield (self.format_tensor_name( + gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32)) + + def set_vocab(self): + self._set_vocab_sentencepiece() + + def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: + if n_kv_head is not None and n_head != n_kv_head: + n_head //= n_kv_head + + return ( + weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) + .swapaxes(1, 2) + .reshape(weights.shape) + ) + + +@Model.register("QWenLMHeadModel") +class QwenModel(Model): + model_arch = gguf.MODEL_ARCH.QWEN + + @staticmethod + def token_bytes_to_string(b): + from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode + byte_encoder = bytes_to_unicode() + return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')]) + + @staticmethod + def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]: + parts = [bytes([b]) for b in token] + while True: + min_idx = None + min_rank = None + for i, pair in enumerate(zip(parts[:-1], parts[1:])): + rank = mergeable_ranks.get(pair[0] + pair[1]) + if rank is not None and (min_rank is None or rank < min_rank): + min_idx = i + min_rank = rank + if min_rank is None or (max_rank is not None and min_rank >= max_rank): + break + assert min_idx is not None + parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:] + return parts + + def set_vocab(self): + self._set_vocab_qwen() + + def set_gguf_parameters(self): + self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) + self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"]) + self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) + self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) + self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"]) + self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_file_type(self.ftype) + + +@Model.register("Qwen2ForCausalLM") +class Qwen2Model(Model): + model_arch = gguf.MODEL_ARCH.QWEN2 + + def set_vocab(self): + try: + self._set_vocab_sentencepiece() + except FileNotFoundError: + self._set_vocab_gpt2() + + +@Model.register("Qwen2MoeForCausalLM") +class Qwen2MoeModel(Model): + model_arch = gguf.MODEL_ARCH.QWEN2MOE + + def set_gguf_parameters(self): + super().set_gguf_parameters() + if (n_experts := self.hparams.get("num_experts")) is not None: + self.gguf_writer.add_expert_count(n_experts) + if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None: + self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size) + logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}") + if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None: + self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size) + logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}") + + _experts: list[dict[str, Tensor]] | None = None + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + # process the experts separately + if name.find("experts") != -1: + n_experts = self.hparams["num_experts"] + assert bid is not None + + if self._experts is None: + self._experts = [{} for _ in range(self.block_count)] + + self._experts[bid][name] = data_torch + + if len(self._experts[bid]) >= n_experts * 3: + tensors: list[tuple[str, Tensor]] = [] + + # merge the experts into a single 3d tensor + for w_name in ["down_proj", "gate_proj", "up_proj"]: + data: list[Tensor] = [] + + for xid in range(n_experts): + ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" + data.append(self._experts[bid][ename]) + del self._experts[bid][ename] + + data_torch = torch.stack(data, dim=0) + + merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" + + new_name = self.map_tensor_name(merged_name) + + tensors.append((new_name, data_torch)) + return tensors + else: + return [] + + return [(self.map_tensor_name(name), data_torch)] + + def prepare_tensors(self): + super().prepare_tensors() + + if self._experts is not None: + # flatten `list[dict[str, Tensor]]` into `list[str]` + experts = [k for d in self._experts for k in d.keys()] + if len(experts) > 0: + raise ValueError(f"Unprocessed experts: {experts}") + + +@Model.register("GPT2LMHeadModel") +class GPT2Model(Model): + model_arch = gguf.MODEL_ARCH.GPT2 + + def set_gguf_parameters(self): + self.gguf_writer.add_block_count(self.hparams["n_layer"]) + self.gguf_writer.add_context_length(self.hparams["n_ctx"]) + self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) + self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) + self.gguf_writer.add_head_count(self.hparams["n_head"]) + self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_file_type(self.ftype) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + tensors: list[tuple[str, Tensor]] = [] + + # we don't need these + if name.endswith((".attn.bias", ".attn.masked_bias")): + return tensors + + if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")): + data_torch = data_torch.transpose(1, 0) + + new_name = self.map_tensor_name(name) + + tensors.append((new_name, data_torch)) + + # note: GPT2 output is tied to (same as) wte in original model + if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD): + tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch)) + + return tensors + + +@Model.register("PhiForCausalLM") +class Phi2Model(Model): + model_arch = gguf.MODEL_ARCH.PHI2 + + def set_gguf_parameters(self): + block_count = self.find_hparam(["num_hidden_layers", "n_layer"]) + + rot_pct = self.find_hparam(["partial_rotary_factor"]) + n_embd = self.find_hparam(["hidden_size", "n_embd"]) + n_head = self.find_hparam(["num_attention_heads", "n_head"]) + + self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"])) + + self.gguf_writer.add_embedding_length(n_embd) + self.gguf_writer.add_feed_forward_length(4 * n_embd) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_head_count(n_head) + self.gguf_writer.add_head_count_kv(n_head) + self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"])) + self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head) + self.gguf_writer.add_file_type(self.ftype) + self.gguf_writer.add_add_bos_token(False) + + +@Model.register("Phi3ForCausalLM") +class Phi3MiniModel(Model): + model_arch = gguf.MODEL_ARCH.PHI3 + + def set_vocab(self): + from sentencepiece import SentencePieceProcessor + + tokenizer_path = self.dir_model / 'tokenizer.model' + + if not tokenizer_path.is_file(): + raise ValueError(f'Error: Missing {tokenizer_path}') + + tokenizer = SentencePieceProcessor() + tokenizer.LoadFromFile(str(tokenizer_path)) + + vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) + + tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] + scores: list[float] = [-10000.0] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size + + for token_id in range(tokenizer.vocab_size()): + + piece = tokenizer.IdToPiece(token_id) + text = piece.encode("utf-8") + score = tokenizer.GetScore(token_id) + + toktype = SentencePieceTokenTypes.NORMAL + if tokenizer.IsUnknown(token_id): + toktype = SentencePieceTokenTypes.UNKNOWN + elif tokenizer.IsControl(token_id): + toktype = SentencePieceTokenTypes.CONTROL + elif tokenizer.IsUnused(token_id): + toktype = SentencePieceTokenTypes.UNUSED + elif tokenizer.IsByte(token_id): + toktype = SentencePieceTokenTypes.BYTE + + tokens[token_id] = text + scores[token_id] = score + toktypes[token_id] = toktype + + added_tokens_file = self.dir_model / 'added_tokens.json' + if added_tokens_file.is_file(): + with open(added_tokens_file, "r", encoding="utf-8") as f: + added_tokens_json = json.load(f) + + for key in added_tokens_json: + token_id = added_tokens_json[key] + if token_id >= vocab_size: + logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') + continue + + tokens[token_id] = key.encode("utf-8") + scores[token_id] = -1000.0 + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + + tokenizer_config_file = self.dir_model / 'tokenizer_config.json' + if tokenizer_config_file.is_file(): + with open(tokenizer_config_file, "r", encoding="utf-8") as f: + tokenizer_config_json = json.load(f) + added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {}) + for token_id, foken_data in added_tokens_decoder.items(): + token_id = int(token_id) + token = foken_data["content"].encode("utf-8") + if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: + if tokens[token_id] != token: + logger.warning( + f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r}' \ + + ' -> {token.decode("utf-8")!r}') + tokens[token_id] = token + scores[token_id] = -1000.0 + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + if foken_data.get("special"): + toktypes[token_id] = SentencePieceTokenTypes.CONTROL + + tokenizer_file = self.dir_model / 'tokenizer.json' + if tokenizer_file.is_file(): + with open(tokenizer_file, "r", encoding="utf-8") as f: + tokenizer_json = json.load(f) + added_tokens = tokenizer_json.get("added_tokens", []) + for foken_data in added_tokens: + token_id = int(foken_data["id"]) + token = foken_data["content"].encode("utf-8") + if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: + if tokens[token_id] != token: + logger.warning( + f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r}' \ + +' -> {token.decode("utf-8")!r}') + tokens[token_id] = token + scores[token_id] = -1000.0 + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + if foken_data.get("special"): + toktypes[token_id] = SentencePieceTokenTypes.CONTROL + + self.gguf_writer.add_tokenizer_model("llama") + self.gguf_writer.add_tokenizer_pre("default") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + + def set_gguf_parameters(self): + block_count = self.find_hparam(["num_hidden_layers", "n_layer"]) + + n_embd = self.find_hparam(["hidden_size", "n_embd"]) + n_head = self.find_hparam(["num_attention_heads", "n_head"]) + n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"]) + rms_eps = self.find_hparam(["rms_norm_eps"]) + max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"]) + orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"]) + rope_dims = n_embd // n_head + + self.gguf_writer.add_context_length(max_pos_embds) + self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds) + self.gguf_writer.add_embedding_length(n_embd) + self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"])) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_head_count(n_head) + self.gguf_writer.add_head_count_kv(n_head_kv) + self.gguf_writer.add_layer_norm_rms_eps(rms_eps) + self.gguf_writer.add_rope_dimension_count(rope_dims) + self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"])) + self.gguf_writer.add_file_type(self.ftype) + self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"])) + + def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: + n_embd = self.find_hparam(["hidden_size", "n_embd"]) + n_head = self.find_hparam(["num_attention_heads", "n_head"]) + max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"]) + orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"]) + rope_dims = n_embd // n_head + + # write rope scaling for long context (128k) model + rope_scaling = self.find_hparam(['rope_scaling'], True) + if rope_scaling is None: + return + + scale = max_pos_embds / orig_max_pos_embds + + rope_scaling_type = rope_scaling.get('type', '').lower() + if len(rope_scaling_type) == 0: + raise KeyError('Missing the required key rope_scaling.type') + + if rope_scaling_type == 'su' or rope_scaling_type == 'longrope': + attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0 + elif rope_scaling_type == 'yarn': + attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0 + else: + raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet') + + self.gguf_writer.add_rope_scaling_attn_factors(attn_factor) + + long_factors = rope_scaling.get('long_factor', None) + short_factors = rope_scaling.get('short_factor', None) + + if long_factors is None or short_factors is None: + raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor') + + if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2: + raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}') + + yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), + torch.tensor(long_factors, dtype=torch.float32)) + yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), + torch.tensor(short_factors, dtype=torch.float32)) + + +@Model.register("PlamoForCausalLM") +class PlamoModel(Model): + model_arch = gguf.MODEL_ARCH.PLAMO + + def set_vocab(self): + self._set_vocab_sentencepiece() + + def set_gguf_parameters(self): + hparams = self.hparams + block_count = hparams["num_hidden_layers"] + + self.gguf_writer.add_context_length(4096) # not in config.json + self.gguf_writer.add_embedding_length(hparams["hidden_size"]) + self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_head_count(hparams["num_attention_heads"]) + self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong + self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) + self.gguf_writer.add_file_type(self.ftype) + + def shuffle_attn_q_weight(self, data_torch): + assert data_torch.size() == (5120, 5120) + data_torch = data_torch.reshape(8, 5, 128, 5120) + data_torch = torch.permute(data_torch, (1, 0, 2, 3)) + data_torch = torch.reshape(data_torch, (5120, 5120)) + return data_torch + + def shuffle_attn_output_weight(self, data_torch): + assert data_torch.size() == (5120, 5120) + data_torch = data_torch.reshape(5120, 8, 5, 128) + data_torch = torch.permute(data_torch, (0, 2, 1, 3)) + data_torch = torch.reshape(data_torch, (5120, 5120)) + return data_torch + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + new_name = self.map_tensor_name(name) + + # shuffle for broadcasting of gqa in ggml_mul_mat + if new_name.endswith("attn_q.weight"): + data_torch = self.shuffle_attn_q_weight(data_torch) + elif new_name.endswith("attn_output.weight"): + data_torch = self.shuffle_attn_output_weight(data_torch) + + return [(new_name, data_torch)] + + +@Model.register("CodeShellForCausalLM") +class CodeShellModel(Model): + model_arch = gguf.MODEL_ARCH.CODESHELL + + def set_gguf_parameters(self): + block_count = self.hparams["n_layer"] + + self.gguf_writer.add_context_length(self.hparams["n_positions"]) + self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) + self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_head_count(self.hparams["n_head"]) + self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"]) + self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_file_type(self.ftype) + self.gguf_writer.add_rope_freq_base(10000.0) + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(1.0) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + new_name = self.map_tensor_name(name) + + tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)] + + if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD): + assert self.tensor_names is not None + + if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")): # pylint: disable=E1135 + # copy tok_embd.weight to output.weight + tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch)) + + return tensors + + +@Model.register("InternLM2ForCausalLM") +class InternLM2Model(Model): + model_arch = gguf.MODEL_ARCH.INTERNLM2 + + def set_vocab(self): + # (TODO): Is there a better way? + # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character + # \x00 specially and convert it into an emoji character to prevent it from being mistakenly + # recognized as an empty string in C++. + from sentencepiece import SentencePieceProcessor + from sentencepiece import sentencepiece_model_pb2 as model + + tokenizer_path = self.dir_model / 'tokenizer.model' + + tokens: list[bytes] = [] + scores: list[float] = [] + toktypes: list[int] = [] + + if not tokenizer_path.is_file(): + logger.error(f'Error: Missing {tokenizer_path}') + sys.exit(1) + + sentencepiece_model = model.ModelProto() # pylint: disable=E1101 + sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) + add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix + + tokenizer = SentencePieceProcessor() + tokenizer.LoadFromFile(str(tokenizer_path)) + + vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) + + for token_id in range(vocab_size): + piece = tokenizer.IdToPiece(token_id) + text = piece.encode("utf-8") + score = tokenizer.GetScore(token_id) + if text == b"\x00": + # (TODO): fixme + # Hack here and replace the \x00 characters. + logger.warning(f"InternLM2 convert token '{text}' to '🐉'!") + text = "🐉".encode("utf-8") + + toktype = SentencePieceTokenTypes.NORMAL + if tokenizer.IsUnknown(token_id): + toktype = SentencePieceTokenTypes.UNKNOWN + elif tokenizer.IsControl(token_id): + toktype = SentencePieceTokenTypes.CONTROL + elif tokenizer.IsUnused(token_id): + toktype = SentencePieceTokenTypes.UNUSED + elif tokenizer.IsByte(token_id): + toktype = SentencePieceTokenTypes.BYTE + # take care of unused raw token + if piece.startswith('[UNUSED'): + toktype = SentencePieceTokenTypes.UNUSED + + tokens.append(text) + scores.append(score) + toktypes.append(toktype) + + added_tokens_file = self.dir_model / 'added_tokens.json' + if added_tokens_file.is_file(): + with open(added_tokens_file, "r", encoding="utf-8") as f: + added_tokens_json = json.load(f) + + for key in added_tokens_json: + tokens.append(key.encode("utf-8")) + scores.append(-1000.0) + toktypes.append(SentencePieceTokenTypes.USER_DEFINED) + + chat_eos_token = '<|im_end|>' + chat_eos_token_id = None + + tokenizer_config_file = self.dir_model / 'tokenizer_config.json' + if tokenizer_config_file.is_file(): + with open(tokenizer_config_file, "r", encoding="utf-8") as f: + tokenizer_config_json = json.load(f) + added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {}) + for token_id, foken_data in added_tokens_decoder.items(): + token_id = int(token_id) + token = foken_data["content"] + if token == chat_eos_token: + chat_eos_token_id = token_id + token = token.encode("utf-8") + if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: + if tokens[token_id] != token: + logger.warning( + f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r}' \ + +' -> {token.decode("utf-8")!r}') + tokens[token_id] = token + scores[token_id] = -1000.0 + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + if foken_data.get("special"): + toktypes[token_id] = SentencePieceTokenTypes.CONTROL + + tokenizer_file = self.dir_model / 'tokenizer.json' + if tokenizer_file.is_file(): + with open(tokenizer_file, "r", encoding="utf-8") as f: + tokenizer_json = json.load(f) + added_tokens = tokenizer_json.get("added_tokens", []) + for foken_data in added_tokens: + token_id = int(foken_data["id"]) + token = foken_data["content"] + if token == chat_eos_token: + chat_eos_token_id = token_id + token = token.encode("utf-8") + if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: + if tokens[token_id] != token: + logger.warning( + f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r}' \ + +' -> {token.decode("utf-8")!r}') + tokens[token_id] = token + scores[token_id] = -1000.0 + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + if foken_data.get("special"): + toktypes[token_id] = SentencePieceTokenTypes.CONTROL + + self.gguf_writer.add_tokenizer_model("llama") + self.gguf_writer.add_tokenizer_pre("default") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + self.gguf_writer.add_add_space_prefix(add_prefix) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + old_eos = special_vocab.special_token_ids["eos"] + if chat_eos_token_id is not None: + # For the chat model, we replace the eos with '<|im_end|>'. + # TODO: this is a hack, should be fixed + # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048 + special_vocab.special_token_ids["eos"] = chat_eos_token_id + logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}" + " in chat mode so that the conversation can end normally.") + + special_vocab.add_to_gguf(self.gguf_writer) + + def set_gguf_parameters(self): + self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) + self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"]) + self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) + self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) + self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"]) + self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) + self.gguf_writer.add_file_type(self.ftype) + if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: + if self.hparams["rope_scaling"].get("type") == "linear": + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + num_heads = self.hparams["num_attention_heads"] + num_kv_heads = self.hparams["num_key_value_heads"] + n_embd = self.hparams["hidden_size"] + q_per_kv = num_heads // num_kv_heads + head_dim = n_embd // num_heads + num_groups = num_heads // q_per_kv + + if bid is not None and f"model.layers.{bid}.attention.wqkv" in name: + qkv = data_torch + + qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd)) + q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1] + + # The model weights of q and k require additional reshape. + q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads) + k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads) + v = v.reshape((-1, v.shape[-1])) + + return [ + (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q), + (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k), + (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v), + ] + else: + return [(self.map_tensor_name(name), data_torch)] + + +@Model.register("BertModel", "CamembertModel") +class BertModel(Model): + model_arch = gguf.MODEL_ARCH.BERT + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.vocab_size = None + + def set_gguf_parameters(self): + super().set_gguf_parameters() + self.gguf_writer.add_causal_attention(False) + + # get pooling path + pooling_path = None + module_path = self.dir_model / "modules.json" + if module_path.is_file(): + with open(module_path, encoding="utf-8") as f: + modules = json.load(f) + for mod in modules: + if mod["type"] == "sentence_transformers.models.Pooling": + pooling_path = mod["path"] + break + + # get pooling type + if pooling_path is not None: + with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f: + pooling = json.load(f) + if pooling["pooling_mode_mean_tokens"]: + pooling_type = gguf.PoolingType.MEAN + elif pooling["pooling_mode_cls_token"]: + pooling_type = gguf.PoolingType.CLS + else: + raise NotImplementedError("Only MEAN and CLS pooling types supported") + self.gguf_writer.add_pooling_type(pooling_type) + + def set_vocab(self): + tokens, toktypes, tokpre = self.get_vocab_base() + self.vocab_size = len(tokens) + + # we need this to validate the size of the token_type embeddings + # though currently we are passing all zeros to the token_type embeddings + self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B" + + # convert to phantom space vocab + def phantom(tok): + if tok.startswith("[") and tok.endswith("]"): + return tok + if tok.startswith("##"): + return tok[2:] + return "\u2581" + tok + tokens = list(map(phantom, tokens)) + + # add vocab to gguf + self.gguf_writer.add_tokenizer_model("bert") + self.gguf_writer.add_tokenizer_pre(tokpre) + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + + # handle special tokens + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + # we are only using BERT for embeddings so we don't need the pooling layer + if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"): + return [] # we don't need these + + return [(self.map_tensor_name(name), data_torch)] + + +@Model.register("NomicBertModel") +class NomicBertModel(BertModel): + model_arch = gguf.MODEL_ARCH.NOMIC_BERT + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # the HF config claims n_ctx=8192, but it uses RoPE scaling + self.hparams["n_ctx"] = 2048 + + # SwigLU activation + assert self.hparams["activation_function"] == "swiglu" + # this doesn't do anything in the HF version + assert self.hparams["causal"] is False + # no bias tensors + assert self.hparams["qkv_proj_bias"] is False + assert self.hparams["mlp_fc1_bias"] is False + assert self.hparams["mlp_fc2_bias"] is False + # norm at end of layer + assert self.hparams["prenorm"] is False + # standard RoPE + assert self.hparams["rotary_emb_fraction"] == 1.0 + assert self.hparams["rotary_emb_interleaved"] is False + assert self.hparams["rotary_emb_scale_base"] is None + + def set_gguf_parameters(self): + super().set_gguf_parameters() + self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"]) + + +@Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification") +class XLMRobertaModel(BertModel): + model_arch = gguf.MODEL_ARCH.BERT + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # we need the pad_token_id to know how to chop down position_embd matrix + if (pad_token_id := self.hparams.get("pad_token_id")) is not None: + self._position_offset = 1 + pad_token_id + if "max_position_embeddings" in self.hparams: + self.hparams["max_position_embeddings"] -= self._position_offset + else: + self._position_offset = None + + def set_vocab(self): + # to avoid TypeError: Descriptors cannot be created directly + # exception when importing sentencepiece_model_pb2 + os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" + from sentencepiece import SentencePieceProcessor + from sentencepiece import sentencepiece_model_pb2 as model + + tokenizer_path = self.dir_model / 'sentencepiece.bpe.model' + if not tokenizer_path.is_file(): + raise FileNotFoundError(f"File not found: {tokenizer_path}") + + sentencepiece_model = model.ModelProto() # pylint: disable=E1101 + sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) + assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM + + add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix + remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces + precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap + + tokenizer = SentencePieceProcessor() + tokenizer.LoadFromFile(str(tokenizer_path)) + + vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) + + tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] + scores: list[float] = [-10000.0] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size + + for token_id in range(tokenizer.vocab_size()): + piece = tokenizer.IdToPiece(token_id) + text = piece.encode("utf-8") + score = tokenizer.GetScore(token_id) + + toktype = SentencePieceTokenTypes.NORMAL + if tokenizer.IsUnknown(token_id): + toktype = SentencePieceTokenTypes.UNKNOWN + elif tokenizer.IsControl(token_id): + toktype = SentencePieceTokenTypes.CONTROL + elif tokenizer.IsUnused(token_id): + toktype = SentencePieceTokenTypes.UNUSED + elif tokenizer.IsByte(token_id): + toktype = SentencePieceTokenTypes.BYTE + + tokens[token_id] = text + scores[token_id] = score + toktypes[token_id] = toktype + + if vocab_size > len(tokens): + pad_count = vocab_size - len(tokens) + logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") + for i in range(1, pad_count + 1): + tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) + scores.append(-1000.0) + toktypes.append(SentencePieceTokenTypes.UNUSED) + + # realign tokens (see HF tokenizer code) + tokens = [b'', b'', b'', b''] + tokens[3:-1] + scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1] + toktypes = [ + SentencePieceTokenTypes.CONTROL, + SentencePieceTokenTypes.CONTROL, + SentencePieceTokenTypes.CONTROL, + SentencePieceTokenTypes.UNKNOWN, + ] + toktypes[3:-1] + + self.gguf_writer.add_tokenizer_model("t5") + self.gguf_writer.add_tokenizer_pre("default") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + self.gguf_writer.add_add_space_prefix(add_prefix) + self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1)) + self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces) + if precompiled_charsmap: + self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + + self.gguf_writer.add_add_bos_token(True) + self.gguf_writer.add_add_eos_token(True) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + # if name starts with "roberta.", remove the prefix + # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main + if name.startswith("roberta."): + name = name[8:] + + # position embeddings start at pad_token_id + 1, so just chop down the weight tensor + if name == "embeddings.position_embeddings.weight": + if self._position_offset is not None: + data_torch = data_torch[self._position_offset:,:] + + return super().modify_tensors(data_torch, name, bid) + + +@Model.register("GemmaForCausalLM") +class GemmaModel(Model): + model_arch = gguf.MODEL_ARCH.GEMMA + + def set_vocab(self): + self._set_vocab_sentencepiece() + + # TODO: these special tokens should be exported only for the CodeGemma family + special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False, + special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot']) + special_vocab._set_special_token("prefix", 67) + special_vocab._set_special_token("suffix", 69) + special_vocab._set_special_token("middle", 68) + special_vocab._set_special_token("fsep", 70) + special_vocab._set_special_token("eot", 107) + special_vocab.chat_template = None # do not add it twice + special_vocab.add_to_gguf(self.gguf_writer) + + self.gguf_writer.add_add_space_prefix(False) + + def set_gguf_parameters(self): + hparams = self.hparams + block_count = hparams["num_hidden_layers"] + + self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) + self.gguf_writer.add_embedding_length(hparams["hidden_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) + self.gguf_writer.add_head_count(hparams["num_attention_heads"]) + self.gguf_writer.add_head_count_kv( + self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_key_length(hparams["head_dim"]) + self.gguf_writer.add_value_length(hparams["head_dim"]) + self.gguf_writer.add_file_type(self.ftype) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + # lm_head is not used in llama.cpp, while autoawq will include this tensor in model + # To prevent errors, skip loading lm_head.weight. + if name == "lm_head.weight": + logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.") + return [] + + if name.endswith("norm.weight"): + data_torch = data_torch + 1 + + return [(self.map_tensor_name(name), data_torch)] + + +@Model.register("Gemma2ForCausalLM") +class Gemma2Model(Model): + model_arch = gguf.MODEL_ARCH.GEMMA2 + + def set_vocab(self): + self._set_vocab_sentencepiece() + + self.gguf_writer.add_add_space_prefix(False) + + def set_gguf_parameters(self): + hparams = self.hparams + block_count = hparams["num_hidden_layers"] + + self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) + self.gguf_writer.add_embedding_length(hparams["hidden_size"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) + self.gguf_writer.add_head_count(hparams["num_attention_heads"]) + self.gguf_writer.add_head_count_kv( + self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_key_length(hparams["head_dim"]) + self.gguf_writer.add_value_length(hparams["head_dim"]) + self.gguf_writer.add_file_type(self.ftype) + self.gguf_writer.add_attn_logit_softcapping( + self.hparams["attn_logit_softcapping"] + ) + self.gguf_writer.add_final_logit_softcapping( + self.hparams["final_logit_softcapping"] + ) + self.gguf_writer.add_sliding_window(self.hparams["sliding_window"]) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + # lm_head is not used in llama.cpp, while autoawq will include this tensor in model + # To prevent errors, skip loading lm_head.weight. + if name == "lm_head.weight": + logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.") + return [] + + if name.endswith("norm.weight"): + data_torch = data_torch + 1 + + return [(self.map_tensor_name(name), data_torch)] + + +@Model.register("Starcoder2ForCausalLM") +class StarCoder2Model(Model): + model_arch = gguf.MODEL_ARCH.STARCODER2 + + +@Model.register("Rwkv6ForCausalLM") +class Rwkv6Model(Model): + model_arch = gguf.MODEL_ARCH.RWKV6 + + def set_vocab(self): + assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file() + vocab_size = self.hparams.get("vocab_size", 65536) + + tokens: list[bytes] = [''.encode("utf-8")] + toktypes: list[int] = [gguf.TokenType.CONTROL] + + with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f: + lines = f.readlines() + for line in lines: + parts = line.split(' ') + assert len(parts) >= 3 + token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1]) + token = token.encode("utf-8") if isinstance(token, str) else token + assert isinstance(token, bytes) + assert len(token) == token_len + token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff" + tokens.append(token_text.encode("utf-8")) + toktypes.append(gguf.TokenType.NORMAL) + remainder = vocab_size - len(tokens) + assert remainder >= 0 + for i in range(len(tokens), vocab_size): + tokens.append(f"[PAD{i}]".encode("utf-8")) + toktypes.append(gguf.TokenType.UNUSED) + + self.gguf_writer.add_tokenizer_model("rwkv") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False) + special_vocab.chat_template = "rwkv-world" + # hack: Add '\n\n' as the EOT token to make it chat normally + special_vocab._set_special_token("eot", 261) + special_vocab.add_to_gguf(self.gguf_writer) + + def set_gguf_parameters(self): + block_count = self.hparams["num_hidden_layers"] + head_size = self.hparams["head_size"] + hidden_size = self.hparams["hidden_size"] + layer_norm_eps = self.hparams["layer_norm_epsilon"] + rescale_every_n_layers = self.hparams["rescale_every"] + intermediate_size = self.hparams["intermediate_size"] \ + if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32) + time_mix_extra_dim = 64 if hidden_size == 4096 else 32 + time_decay_extra_dim = 128 if hidden_size == 4096 else 64 + + # RWKV isn't context limited + self.gguf_writer.add_context_length(1048576) + self.gguf_writer.add_embedding_length(hidden_size) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_layer_norm_eps(layer_norm_eps) + self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers) + self.gguf_writer.add_wkv_head_size(head_size) + self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim) + self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim) + self.gguf_writer.add_feed_forward_length(intermediate_size) + self.gguf_writer.add_file_type(self.ftype) + + # required by llama.cpp, unused + self.gguf_writer.add_head_count(0) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + new_name = self.map_tensor_name(name) + + if not (new_name.endswith(".weight") or new_name.endswith(".bias")): + new_name += ".weight" + + if new_name.endswith("time_mix_w1.weight") or new_name.endswith( + "time_mix_decay_w1.weight") or new_name.endswith( + "time_mix_decay_w2.weight"): + data_torch = data_torch.transpose(0, 1) + + if new_name.endswith("time_mix_w2.weight"): + data_torch = data_torch.permute(0, 2, 1) + + rescale_every_n_layers = self.hparams["rescale_every"] + if rescale_every_n_layers > 0: + if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"): + data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers)) + + yield (new_name, data_torch) + + +@Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM") +class MambaModel(Model): + model_arch = gguf.MODEL_ARCH.MAMBA + + def set_vocab(self): + vocab_size = self.hparams["vocab_size"] + # Round vocab size to next multiple of 8 + pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8) + # pad using ceiling division + # ref: https://stackoverflow.com/a/17511341/22827863 + vocab_size = -(vocab_size // -pad_vocab) * pad_vocab + self.hparams["vocab_size"] = vocab_size + + if (self.dir_model / "tokenizer.json").is_file(): + self._set_vocab_gpt2() + elif (self.dir_model / "tokenizer.model").is_file(): + self._set_vocab_sentencepiece() + else: + # Use the GPT-NeoX tokenizer when no tokenizer files are present + self._set_vocab_builtin("gpt-neox", vocab_size) + + def set_gguf_parameters(self): + d_model = self.find_hparam(["hidden_size", "d_model"]) + d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4 + d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model + d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16 + # ceiling division + # ref: https://stackoverflow.com/a/17511341/22827863 + dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16) + rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5 + use_dt_b_c_norm = False + # For falconmamba we do apply RMS norm on B / DT and C layers + if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",): + use_dt_b_c_norm = True + # Fail early for models which don't have a block expansion factor of 2 + assert d_inner == 2 * d_model + + self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default + self.gguf_writer.add_embedding_length(d_model) + self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading + self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading + self.gguf_writer.add_block_count(self.block_count) + self.gguf_writer.add_ssm_conv_kernel(d_conv) + self.gguf_writer.add_ssm_inner_size(d_inner) + self.gguf_writer.add_ssm_state_size(d_state) + self.gguf_writer.add_ssm_time_step_rank(dt_rank) + self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps) + self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) + self.gguf_writer.add_file_type(self.ftype) + + _tok_embd = None + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT) + tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD) + + new_name = self.map_tensor_name(name) + + if name.endswith(".A_log"): + logger.debug("A_log --> A ==> " + new_name) + data_torch = -torch.exp(data_torch) + + # assuming token_embd.weight is seen before output.weight + if self._tok_embd is not None and new_name == output_name: + if torch.equal(self._tok_embd, data_torch): + logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting") + return [] + elif new_name == tok_embd_name: + self._tok_embd = data_torch + + return [(new_name, data_torch)] + + +@Model.register("CohereForCausalLM") +class CommandR2Model(Model): + model_arch = gguf.MODEL_ARCH.COMMAND_R + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # max_position_embeddings = 8192 in config.json but model was actually + # trained on 128k context length + # aya-23 models don't have model_max_length specified + self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"]) + + def set_gguf_parameters(self): + super().set_gguf_parameters() + self.gguf_writer.add_logit_scale(self.hparams["logit_scale"]) + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) + + +@Model.register("OlmoForCausalLM") +@Model.register("OLMoForCausalLM") +class OlmoModel(Model): + model_arch = gguf.MODEL_ARCH.OLMO + + def set_gguf_parameters(self): + super().set_gguf_parameters() + self.gguf_writer.add_layer_norm_eps(1e-5) + clip_qkv = self.hparams.get("clip_qkv") + if clip_qkv is not None: + self.gguf_writer.add_clamp_kqv(clip_qkv) + + # Same as super class, but permuting q_proj, k_proj + # Copied from: LlamaModel + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + n_head = self.hparams["num_attention_heads"] + n_kv_head = self.hparams.get("num_key_value_heads") + + if name.endswith("q_proj.weight"): + data_torch = LlamaModel.permute(data_torch, n_head, n_head) + if name.endswith("k_proj.weight"): + data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) + + return [(self.map_tensor_name(name), data_torch)] + + +@Model.register("Olmo2ForCausalLM") +class Olmo2Model(Model): + model_arch = gguf.MODEL_ARCH.OLMO2 + + +@Model.register("OlmoeForCausalLM") +class OlmoeModel(Model): + model_arch = gguf.MODEL_ARCH.OLMOE + + def set_gguf_parameters(self): + super().set_gguf_parameters() + self.gguf_writer.add_layer_norm_rms_eps(1e-5) + if (n_experts := self.hparams.get("num_experts")) is not None: + self.gguf_writer.add_expert_count(n_experts) + + _experts: list[dict[str, Tensor]] | None = None + + # Copied from: Qwen2MoeModel + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + # process the experts separately + if name.find("experts") != -1: + n_experts = self.hparams["num_experts"] + assert bid is not None + + if self._experts is None: + self._experts = [{} for _ in range(self.block_count)] + + self._experts[bid][name] = data_torch + + if len(self._experts[bid]) >= n_experts * 3: + tensors: list[tuple[str, Tensor]] = [] + + # merge the experts into a single 3d tensor + for w_name in ["down_proj", "gate_proj", "up_proj"]: + data: list[Tensor] = [] + + for xid in range(n_experts): + ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" + data.append(self._experts[bid][ename]) + del self._experts[bid][ename] + + data_torch = torch.stack(data, dim=0) + + merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" + + new_name = self.map_tensor_name(merged_name) + + tensors.append((new_name, data_torch)) + return tensors + else: + return [] + + return [(self.map_tensor_name(name), data_torch)] + + # Copied from: Qwen2MoeModel + def prepare_tensors(self): + super().prepare_tensors() + + if self._experts is not None: + # flatten `list[dict[str, Tensor]]` into `list[str]` + experts = [k for d in self._experts for k in d.keys()] + if len(experts) > 0: + raise ValueError(f"Unprocessed experts: {experts}") + + +@Model.register("JinaBertModel", "JinaBertForMaskedLM") +class JinaBertV2Model(BertModel): + model_arch = gguf.MODEL_ARCH.JINA_BERT_V2 + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.intermediate_size = self.hparams["intermediate_size"] + + def get_tensors(self): + for name, data in super().get_tensors(): + if 'gated_layer' in name: + d1 = data[:self.intermediate_size, :] + name1 = name.replace('gated_layers', 'gated_layers_w') + name1 = name1.replace('up_gated_layer', 'gated_layers_v') + d2 = data[self.intermediate_size:, :] + name2 = name.replace('gated_layers', 'gated_layers_v') + name2 = name2.replace('up_gated_layer', 'gated_layers_w') + yield name1, d1 + yield name2, d2 + continue + + yield name, data + + def set_vocab(self): + tokenizer_class = 'BertTokenizer' + with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f: + tokenizer_class = json.load(f)['tokenizer_class'] + + if tokenizer_class == 'BertTokenizer': + super().set_vocab() + elif tokenizer_class == 'RobertaTokenizer': + self._set_vocab_gpt2() + self.gguf_writer.add_token_type_count(2) + else: + raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel') + self.gguf_writer.add_add_bos_token(True) + self.gguf_writer.add_add_eos_token(True) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + # if name starts with "bert.", remove the prefix + # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en + if name.startswith("bert."): + name = name[5:] + + return super().modify_tensors(data_torch, name, bid) + + +@Model.register("OpenELMForCausalLM") +class OpenELMModel(Model): + model_arch = gguf.MODEL_ARCH.OPENELM + + @staticmethod + def _make_divisible(v: float | int, divisor: int) -> int: + new_v = max(divisor, int(v + divisor / 2) // divisor * divisor) + # Make sure that round down does not go down by more than 10%. + if new_v < 0.9 * v: + new_v += divisor + return new_v + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + ffn_multipliers: list[float] = self.hparams["ffn_multipliers"] + ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"] + self._n_embd: int = self.hparams["model_dim"] + self._num_kv_heads: list[int] = self.hparams["num_kv_heads"] + self._num_query_heads: list[int] = self.hparams["num_query_heads"] + self._ffn_dims: list[int] = [ + OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor) + for multiplier in ffn_multipliers + ] + assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int) + assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int) + + # Uses the tokenizer from meta-llama/Llama-2-7b-hf + def set_vocab(self): + try: + self._set_vocab_sentencepiece() + except FileNotFoundError: + self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"]) + + def set_gguf_parameters(self): + n_embd = self._n_embd + head_dim = self.hparams["head_dim"] + rot_pct = 1.0 + assert self.block_count == len(self._num_kv_heads) + assert self.block_count == len(self._num_query_heads) + assert self.block_count == len(self._ffn_dims) + + self.gguf_writer.add_block_count(self.block_count) + self.gguf_writer.add_context_length(self.hparams["max_context_length"]) + self.gguf_writer.add_embedding_length(n_embd) + self.gguf_writer.add_feed_forward_length(self._ffn_dims) + self.gguf_writer.add_head_count(self._num_query_heads) + self.gguf_writer.add_head_count_kv(self._num_kv_heads) + self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"]) + # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30 + self.gguf_writer.add_layer_norm_rms_eps(1e-6) + self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim)) + self.gguf_writer.add_key_length(head_dim) + self.gguf_writer.add_value_length(head_dim) + self.gguf_writer.add_file_type(self.ftype) + + def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any: + if "n_layers" in keys: + return self.hparams["num_transformer_layers"] + + return super().find_hparam(keys, optional) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + + # split ff + if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight": + ff_dim = self._ffn_dims[bid] + yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]) + yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]) + return + + yield (self.map_tensor_name(name), data_torch) + + +@Model.register("ArcticForCausalLM") +class ArcticModel(Model): + model_arch = gguf.MODEL_ARCH.ARCTIC + + def set_vocab(self): + # The reason for using a custom implementation here is that the + # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from + # tokenizer.model and used them as BOS and EOS instead of adding new tokens. + from sentencepiece import SentencePieceProcessor + + tokenizer_path = self.dir_model / 'tokenizer.model' + + if not tokenizer_path.is_file(): + logger.error(f'Error: Missing {tokenizer_path}') + sys.exit(1) + + # Read the whole vocabulary from the tokenizer.model file + tokenizer = SentencePieceProcessor() + tokenizer.LoadFromFile(str(tokenizer_path)) + + vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) + + tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] + scores: list[float] = [-10000.0] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size + + for token_id in range(tokenizer.vocab_size()): + + piece = tokenizer.IdToPiece(token_id) + text = piece.encode("utf-8") + score = tokenizer.GetScore(token_id) + + toktype = SentencePieceTokenTypes.NORMAL + if tokenizer.IsUnknown(token_id): + toktype = SentencePieceTokenTypes.UNKNOWN + elif tokenizer.IsControl(token_id): + toktype = SentencePieceTokenTypes.CONTROL + elif tokenizer.IsUnused(token_id): + toktype = SentencePieceTokenTypes.UNUSED + elif tokenizer.IsByte(token_id): + toktype = SentencePieceTokenTypes.BYTE + + tokens[token_id] = text + scores[token_id] = score + toktypes[token_id] = toktype + + # Use the added_tokens_decoder field from tokeniser_config.json as the source + # of information about added/redefined tokens and modify them accordingly. + tokenizer_config_file = self.dir_model / 'tokenizer_config.json' + if tokenizer_config_file.is_file(): + with open(tokenizer_config_file, "r", encoding="utf-8") as f: + tokenizer_config_json = json.load(f) + + if "added_tokens_decoder" in tokenizer_config_json: + added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"] + for token_id, token_json in added_tokens_decoder.items(): + token_id = int(token_id) + if token_id >= vocab_size: + logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') + continue + + token_content = token_json["content"] + token_type = SentencePieceTokenTypes.USER_DEFINED + token_score = -10000.0 + + # Map unk_token to UNKNOWN, other special tokens to CONTROL + # Set the score to 0.0 as in the original tokenizer.model + if ("special" in token_json) and token_json["special"]: + if token_content == tokenizer_config_json["unk_token"]: + token_type = SentencePieceTokenTypes.UNKNOWN + else: + token_type = SentencePieceTokenTypes.CONTROL + token_score = 0.0 + + logger.info( + f"Setting added token {token_id} to '{token_content}' (type: {token_type}," + " score: {token_score:.2f})") + tokens[token_id] = token_content.encode("utf-8") + toktypes[token_id] = token_type + scores[token_id] = token_score + + self.gguf_writer.add_tokenizer_model("llama") + self.gguf_writer.add_tokenizer_pre("default") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + + def set_gguf_parameters(self): + super().set_gguf_parameters() + hparams = self.hparams + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) + + _experts: list[dict[str, Tensor]] | None = None + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + n_head = self.hparams["num_attention_heads"] + n_kv_head = self.hparams.get("num_key_value_heads") + + if name.endswith("q_proj.weight"): + data_torch = LlamaModel.permute(data_torch, n_head, n_head) + if name.endswith("k_proj.weight"): + data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) + + # process the experts separately + if name.find("block_sparse_moe.experts") != -1: + n_experts = self.hparams["num_local_experts"] + + assert bid is not None + + if self._experts is None: + self._experts = [{} for _ in range(self.block_count)] + + self._experts[bid][name] = data_torch + + if len(self._experts[bid]) >= n_experts * 3: + tensors: list[tuple[str, Tensor]] = [] + + # merge the experts into a single 3d tensor + for wid in ["w1", "w2", "w3"]: + data: list[Tensor] = [] + + for xid in range(n_experts): + ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight" + data.append(self._experts[bid][ename]) + del self._experts[bid][ename] + + data_torch = torch.stack(data, dim=0) + + merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight" + + new_name = self.map_tensor_name(merged_name) + + tensors.append((new_name, data_torch)) + return tensors + else: + return [] + + return [(self.map_tensor_name(name), data_torch)] + + def prepare_tensors(self): + super().prepare_tensors() + + if self._experts is not None: + # flatten `list[dict[str, Tensor]]` into `list[str]` + experts = [k for d in self._experts for k in d.keys()] + if len(experts) > 0: + raise ValueError(f"Unprocessed experts: {experts}") + + +@Model.register("DeepseekV2ForCausalLM") +class DeepseekV2Model(Model): + model_arch = gguf.MODEL_ARCH.DEEPSEEK2 + + def set_vocab(self): + self._set_vocab_gpt2() + + def set_gguf_parameters(self): + super().set_gguf_parameters() + hparams = self.hparams + + self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"]) + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None: + self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"]) + self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"]) + self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"]) + self.gguf_writer.add_value_length(hparams["v_head_dim"]) + self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"]) + self.gguf_writer.add_expert_count(hparams["n_routed_experts"]) + self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"]) + self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"]) + self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"]) + + if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: + if self.hparams["rope_scaling"].get("type") == "yarn": + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) + self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) + self.gguf_writer.add_rope_scaling_orig_ctx_len( + self.hparams["rope_scaling"]["original_max_position_embeddings"]) + self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"]) + + _experts: list[dict[str, Tensor]] | None = None + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + # process the experts separately + if name.find("mlp.experts") != -1: + n_experts = self.hparams["n_routed_experts"] + assert bid is not None + + if self._experts is None: + self._experts = [{} for _ in range(self.block_count)] + + self._experts[bid][name] = data_torch + + if len(self._experts[bid]) >= n_experts * 3: + tensors: list[tuple[str, Tensor]] = [] + + # merge the experts into a single 3d tensor + for w_name in ["down_proj", "gate_proj", "up_proj"]: + data: list[Tensor] = [] + + for xid in range(n_experts): + ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" + data.append(self._experts[bid][ename]) + del self._experts[bid][ename] + + data_torch = torch.stack(data, dim=0) + + merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" + + new_name = self.map_tensor_name(merged_name) + + tensors.append((new_name, data_torch)) + return tensors + else: + return [] + + return [(self.map_tensor_name(name), data_torch)] + + def prepare_tensors(self): + super().prepare_tensors() + + if self._experts is not None: + # flatten `list[dict[str, Tensor]]` into `list[str]` + experts = [k for d in self._experts for k in d.keys()] + if len(experts) > 0: + raise ValueError(f"Unprocessed experts: {experts}") + + +@Model.register("T5WithLMHeadModel") +@Model.register("T5ForConditionalGeneration") +@Model.register("MT5ForConditionalGeneration") +@Model.register("UMT5ForConditionalGeneration") +class T5Model(Model): + model_arch = gguf.MODEL_ARCH.T5 + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.shared_token_embeddings_found = False + + def set_vocab(self): + # to avoid TypeError: Descriptors cannot be created directly + # exception when importing sentencepiece_model_pb2 + os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" + from sentencepiece import SentencePieceProcessor + from sentencepiece import sentencepiece_model_pb2 as model + + tokenizer_path = self.dir_model / 'tokenizer.model' + + # many older models use spiece.model tokenizer model filename + if not tokenizer_path.is_file(): + tokenizer_path = self.dir_model / 'spiece.model' + + if not tokenizer_path.is_file(): + raise FileNotFoundError(f"File not found: {tokenizer_path}") + + sentencepiece_model = model.ModelProto() # pylint: disable=E1101 + sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) + + # some models like Pile-T5 family use BPE tokenizer instead of Unigram + if sentencepiece_model.trainer_spec.model_type == 2: # BPE + # assure the tokenizer model file name is correct + assert tokenizer_path.name == 'tokenizer.model' + return self._set_vocab_sentencepiece() + else: + assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM + + add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix + remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces + precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap + + tokenizer = SentencePieceProcessor() + tokenizer.LoadFromFile(str(tokenizer_path)) + + vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) + + tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] + scores: list[float] = [-10000.0] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size + + for token_id in range(tokenizer.vocab_size()): + piece = tokenizer.IdToPiece(token_id) + text = piece.encode("utf-8") + score = tokenizer.GetScore(token_id) + + toktype = SentencePieceTokenTypes.NORMAL + if tokenizer.IsUnknown(token_id): + toktype = SentencePieceTokenTypes.UNKNOWN + elif tokenizer.IsControl(token_id): + toktype = SentencePieceTokenTypes.CONTROL + elif tokenizer.IsUnused(token_id): + toktype = SentencePieceTokenTypes.UNUSED + elif tokenizer.IsByte(token_id): + toktype = SentencePieceTokenTypes.BYTE + + tokens[token_id] = text + scores[token_id] = score + toktypes[token_id] = toktype + + added_tokens_file = self.dir_model / 'added_tokens.json' + if added_tokens_file.is_file(): + with open(added_tokens_file, "r", encoding="utf-8") as f: + added_tokens_json = json.load(f) + for key in added_tokens_json: + token_id = added_tokens_json[key] + if token_id >= vocab_size: + logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') + continue + + tokens[token_id] = key.encode("utf-8") + scores[token_id] = -1000.0 + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + + if vocab_size > len(tokens): + pad_count = vocab_size - len(tokens) + logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") + for i in range(1, pad_count + 1): + tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) + scores.append(-1000.0) + toktypes.append(SentencePieceTokenTypes.UNUSED) + + self.gguf_writer.add_tokenizer_model("t5") + self.gguf_writer.add_tokenizer_pre("default") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + self.gguf_writer.add_add_space_prefix(add_prefix) + self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces) + if precompiled_charsmap: + self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + + self.gguf_writer.add_add_bos_token(False) + self.gguf_writer.add_add_eos_token(True) + + def set_gguf_parameters(self): + if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None: + logger.warning("Couldn't find context length in config.json, assuming default value of 512") + n_ctx = 512 + self.gguf_writer.add_context_length(n_ctx) + self.gguf_writer.add_embedding_length(self.hparams["d_model"]) + self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"]) + self.gguf_writer.add_block_count(self.hparams["num_layers"]) + self.gguf_writer.add_head_count(self.hparams["num_heads"]) + self.gguf_writer.add_key_length(self.hparams["d_kv"]) + self.gguf_writer.add_value_length(self.hparams["d_kv"]) + self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"]) + self.gguf_writer.add_file_type(self.ftype) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]: + if not self.shared_token_embeddings_found: + name = "shared.weight" + self.shared_token_embeddings_found = True + else: + logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.") + return [] + + return [(self.map_tensor_name(name), data_torch)] + + +@Model.register("T5EncoderModel") +class T5EncoderModel(Model): + model_arch = gguf.MODEL_ARCH.T5ENCODER + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.shared_token_embeddings_found = False + + def set_vocab(self): + # to avoid TypeError: Descriptors cannot be created directly + # exception when importing sentencepiece_model_pb2 + os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" + from sentencepiece import SentencePieceProcessor + from sentencepiece import sentencepiece_model_pb2 as model + + tokenizer_path = self.dir_model / 'tokenizer.model' + + # many older models use spiece.model tokenizer model filename + if not tokenizer_path.is_file(): + tokenizer_path = self.dir_model / 'spiece.model' + + if not tokenizer_path.is_file(): + raise FileNotFoundError(f"File not found: {tokenizer_path}") + + sentencepiece_model = model.ModelProto() # pylint: disable=E1101 + sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) + + # some models like Pile-T5 family use BPE tokenizer instead of Unigram + if sentencepiece_model.trainer_spec.model_type == 2: # BPE + # assure the tokenizer model file name is correct + assert tokenizer_path.name == 'tokenizer.model' + return self._set_vocab_sentencepiece() + else: + assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM + + add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix + remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces + precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap + + tokenizer = SentencePieceProcessor() + tokenizer.LoadFromFile(str(tokenizer_path)) + + vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) + + tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] + scores: list[float] = [-10000.0] * vocab_size + toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size + + for token_id in range(tokenizer.vocab_size()): + piece = tokenizer.IdToPiece(token_id) + text = piece.encode("utf-8") + score = tokenizer.GetScore(token_id) + + toktype = SentencePieceTokenTypes.NORMAL + if tokenizer.IsUnknown(token_id): + toktype = SentencePieceTokenTypes.UNKNOWN + elif tokenizer.IsControl(token_id): + toktype = SentencePieceTokenTypes.CONTROL + elif tokenizer.IsUnused(token_id): + toktype = SentencePieceTokenTypes.UNUSED + elif tokenizer.IsByte(token_id): + toktype = SentencePieceTokenTypes.BYTE + + tokens[token_id] = text + scores[token_id] = score + toktypes[token_id] = toktype + + added_tokens_file = self.dir_model / 'added_tokens.json' + if added_tokens_file.is_file(): + with open(added_tokens_file, "r", encoding="utf-8") as f: + added_tokens_json = json.load(f) + for key in added_tokens_json: + token_id = added_tokens_json[key] + if token_id >= vocab_size: + logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') + continue + + tokens[token_id] = key.encode("utf-8") + scores[token_id] = -1000.0 + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + + if vocab_size > len(tokens): + pad_count = vocab_size - len(tokens) + logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") + for i in range(1, pad_count + 1): + tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) + scores.append(-1000.0) + toktypes.append(SentencePieceTokenTypes.UNUSED) + + self.gguf_writer.add_tokenizer_model("t5") + self.gguf_writer.add_tokenizer_pre("default") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + self.gguf_writer.add_add_space_prefix(add_prefix) + self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces) + if precompiled_charsmap: + self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + + self.gguf_writer.add_add_bos_token(False) + self.gguf_writer.add_add_eos_token(True) + + def set_gguf_parameters(self): + if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None: + logger.warning("Couldn't find context length in config.json, assuming default value of 512") + n_ctx = 512 + self.gguf_writer.add_context_length(n_ctx) + self.gguf_writer.add_embedding_length(self.hparams["d_model"]) + self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"]) + self.gguf_writer.add_block_count(self.hparams["num_layers"]) + self.gguf_writer.add_head_count(self.hparams["num_heads"]) + self.gguf_writer.add_key_length(self.hparams["d_kv"]) + self.gguf_writer.add_value_length(self.hparams["d_kv"]) + self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_file_type(self.ftype) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]: + if not self.shared_token_embeddings_found: + name = "shared.weight" + self.shared_token_embeddings_found = True + else: + logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.") + return [] + + return [(self.map_tensor_name(name), data_torch)] + + +@Model.register("JAISLMHeadModel") +class JaisModel(Model): + model_arch = gguf.MODEL_ARCH.JAIS + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # SwigLU activation + assert self.hparams["activation_function"] == "swiglu" + # ALiBi position embedding + assert self.hparams["position_embedding_type"] == "alibi" + + # Embeddings scale + self.embeddings_scale = 1.0 + if 'mup_embeddings_scale' in self.hparams: + self.embeddings_scale = self.hparams['mup_embeddings_scale'] + elif 'embeddings_scale' in self.hparams: + self.embeddings_scale = self.hparams['embeddings_scale'] + else: + assert False + + self.width_scale = 1.0 + if 'mup_output_alpha' in self.hparams: + assert 'mup_width_scale' in self.hparams + self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale'] + elif 'width_scale' in self.hparams: + self.width_scale = self.hparams['width_scale'] + else: + assert False + + self.max_alibi_bias = 8.0 + + def set_vocab(self): + self._set_vocab_gpt2() + + def set_gguf_parameters(self): + self.gguf_writer.add_block_count(self.hparams["n_layer"]) + self.gguf_writer.add_context_length(self.hparams["n_positions"]) + self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) + self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"]) + self.gguf_writer.add_head_count(self.hparams["n_head"]) + self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_file_type(self.ftype) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + tensors: list[tuple[str, Tensor]] = [] + + # we don't need these + if name.endswith((".attn.bias")): + return tensors + + if name.endswith(("relative_pe.slopes")): + # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation) + # Some other models has max_alibi_bias spelled out explicitly in the hyperparams, + # but Jais's PyTorch model simply precalculates the slope values and places them + # in relative_pes.slopes + n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"])) + first_val = float(data_torch[0].item()) + self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2) + + return tensors + + if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")): + data_torch = data_torch.transpose(1, 0) + + new_name = self.map_tensor_name(name) + + if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD): + tensors.append((new_name, data_torch * self.embeddings_scale)) + elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT): + tensors.append((new_name, data_torch * self.width_scale)) + else: + tensors.append((new_name, data_torch)) + + return tensors + + def prepare_tensors(self): + super().prepare_tensors() + self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias) + + +@Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration") +class ChatGLMModel(Model): + model_arch = gguf.MODEL_ARCH.CHATGLM + + def set_vocab_chatglm3(self): + dir_model = self.dir_model + hparams = self.hparams + tokens: list[bytes] = [] + toktypes: list[int] = [] + scores: list[float] = [] + + from transformers import AutoTokenizer + tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) + vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab())) + assert max(tokenizer.get_vocab().values()) < vocab_size + role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"] + special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens + for token_id in range(vocab_size): + piece = tokenizer._convert_id_to_token(token_id) + if token_id == 0: + piece = "" + elif token_id == 1: + piece = "" + elif token_id == 2: + piece = "" + + text = piece.encode("utf-8") + score = 0.0 + if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size(): + score = tokenizer.tokenizer.sp_model.get_score(token_id) + + if token_id >= tokenizer.tokenizer.sp_model.vocab_size(): + if piece in special_tokens: + toktype = SentencePieceTokenTypes.CONTROL + elif len(piece) == 0: + text = f"[PAD{token_id}]".encode("utf-8") + toktype = SentencePieceTokenTypes.UNUSED + else: + toktype = SentencePieceTokenTypes.USER_DEFINED + tokens.append(text) + scores.append(score) + toktypes.append(toktype) + continue + + toktype = SentencePieceTokenTypes.NORMAL + if tokenizer.tokenizer.sp_model.is_unknown(token_id): + toktype = SentencePieceTokenTypes.UNKNOWN + elif tokenizer.tokenizer.sp_model.is_control(token_id): + toktype = SentencePieceTokenTypes.CONTROL + elif tokenizer.tokenizer.sp_model.is_unused(token_id): + toktype = SentencePieceTokenTypes.UNUSED + elif tokenizer.tokenizer.sp_model.is_byte(token_id): + toktype = SentencePieceTokenTypes.BYTE + + tokens.append(text) + scores.append(score) + toktypes.append(toktype) + + self.gguf_writer.add_tokenizer_model("llama") + # glm3 needs prefix and suffix formatted as: + # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>" + self.gguf_writer.add_tokenizer_pre("chatglm-spm") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + + @staticmethod + def token_bytes_to_string(b): + from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode + byte_encoder = bytes_to_unicode() + return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')]) + + @staticmethod + def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]: + parts = [bytes([b]) for b in token] + while True: + min_idx = None + min_rank = None + for i, pair in enumerate(zip(parts[:-1], parts[1:])): + rank = mergeable_ranks.get(pair[0] + pair[1]) + if rank is not None and (min_rank is None or rank < min_rank): + min_idx = i + min_rank = rank + if min_rank is None or (max_rank is not None and min_rank >= max_rank): + break + assert min_idx is not None + parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:] + return parts + + def set_vocab(self): + if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""): + self.set_vocab_chatglm3() + return + + dir_model = self.dir_model + hparams = self.hparams + tokens: list[str] = [] + toktypes: list[int] = [] + + from transformers import AutoTokenizer + tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) + vocab_size = hparams["padded_vocab_size"] + assert max(tokenizer.get_vocab().values()) < vocab_size + + tokpre = self.get_vocab_base_pre(tokenizer) + + merges = [] + vocab = {} + mergeable_ranks = tokenizer.mergeable_ranks + for token, rank in mergeable_ranks.items(): + vocab[ChatGLMModel.token_bytes_to_string(token)] = rank + if len(token) == 1: + continue + merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank) + assert len(merged) >= 2 and len(merged) <= 7 + merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged))) + + # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined + added_vocab = tokenizer.get_added_vocab() + reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()} + + for i in range(vocab_size): + if i not in reverse_vocab: + tokens.append(f"[PAD{i}]") + toktypes.append(gguf.TokenType.UNUSED) + elif reverse_vocab[i] in added_vocab: + tokens.append(reverse_vocab[i]) + if tokenizer.added_tokens_decoder[i].special: + toktypes.append(gguf.TokenType.CONTROL) + else: + toktypes.append(gguf.TokenType.USER_DEFINED) + else: + tokens.append(reverse_vocab[i]) + toktypes.append(gguf.TokenType.NORMAL) + + self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(dir_model, load_merges=False) + special_vocab.merges = merges + # only add special tokens when they were not already loaded from config.json + special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"]) + special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) + # this one is usually not in config.json anyway + special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) + special_vocab.add_to_gguf(self.gguf_writer) + + def set_gguf_parameters(self): + n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) + n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) + n_head_kv = self.hparams.get("multi_query_group_num", n_head) + self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed)) + self.gguf_writer.add_embedding_length(n_embed) + self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed)) + self.gguf_writer.add_block_count(self.hparams["num_layers"]) + self.gguf_writer.add_head_count(n_head) + self.gguf_writer.add_head_count_kv(n_head_kv) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"]) + self.gguf_writer.add_file_type(self.ftype) + self.gguf_writer.add_rope_dimension_count(64) + self.gguf_writer.add_add_bos_token(False) + rope_freq = 10000 + if "rope_ratio" in self.hparams: + rope_freq = rope_freq * self.hparams["rope_ratio"] + self.gguf_writer.add_rope_freq_base(rope_freq) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + if name.endswith(".rotary_pos_emb.inv_freq"): + return [] + + name = name.removeprefix("transformer.") + return [(self.map_tensor_name(name), data_torch)] + + +@Model.register("NemotronForCausalLM") +class NemotronModel(Model): + model_arch = gguf.MODEL_ARCH.NEMOTRON + + def set_vocab(self): + self._set_vocab_sentencepiece() + self.gguf_writer.add_pad_token_id(0) + self.gguf_writer.add_unk_token_id(1) + + def set_gguf_parameters(self): + super().set_gguf_parameters() + hparams = self.hparams + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + + f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"]) + self.gguf_writer.add_layer_norm_eps(f_norm_eps) + + # * Partial RoPE + rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"]) + n_embd = self.find_hparam(["hidden_size", "n_embd"]) + n_head = self.find_hparam(["num_attention_heads", "n_head"]) + self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head) + + # * RopeScaling for Nemotron + if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None: + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) + else: + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"]) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + if name.endswith("norm.weight"): + data_torch = data_torch + 1 + + return [(self.map_tensor_name(name), data_torch)] + + +@Model.register("ExaoneForCausalLM") +class ExaoneModel(Model): + model_arch = gguf.MODEL_ARCH.EXAONE + + def set_gguf_parameters(self): + hparams = self.hparams + + assert (hparams["activation_function"] == "silu") + + max_position_embeddings = hparams["max_position_embeddings"] + embed_dim = hparams["hidden_size"] + num_heads = hparams["num_attention_heads"] + num_kv_heads = hparams.get("num_key_value_heads", num_heads) + layer_norm_eps = hparams["layer_norm_epsilon"] + intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim + num_layers = hparams["num_layers"] + # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0 + # attention_dropout_rate = hparams["attention_dropout"] + # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0 + # embed_dropout_rate = hparams["embed_dropout"] + self.gguf_writer.add_embedding_length(embed_dim) + self.gguf_writer.add_head_count(num_heads) + self.gguf_writer.add_head_count_kv(num_kv_heads) + self.gguf_writer.add_context_length(max_position_embeddings) + self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps) + self.gguf_writer.add_feed_forward_length(intermediate_size) + self.gguf_writer.add_block_count(num_layers) + self.gguf_writer.add_file_type(self.ftype) + + if (rope_theta := self.hparams.get("rope_theta")) is not None: + self.gguf_writer.add_rope_freq_base(rope_theta) + rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True) + rotary_factor = rotary_factor if rotary_factor is not None else 1.0 + self.gguf_writer.add_rope_dimension_count( + int(rotary_factor * + (hparams["hidden_size"] // hparams["num_attention_heads"]))) + if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]: + if hparams["rope_scaling"].get("type") == "linear": + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"]) + + def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: + if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): + if rope_scaling.get("rope_type", '').lower() == "llama3": + base = self.hparams.get("rope_theta", 10000.0) + dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) + + factor = rope_scaling.get("factor", 8.0) + low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) + high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) + old_context_len = self.hparams.get("original_max_position_embeddings", 8192) + + low_freq_wavelen = old_context_len / low_freq_factor + high_freq_wavelen = old_context_len / high_freq_factor + assert low_freq_wavelen != high_freq_wavelen + + rope_factors = [] + for freq in freqs: + wavelen = 2 * math.pi / freq + if wavelen < high_freq_wavelen: + rope_factors.append(1) + elif wavelen > low_freq_wavelen: + rope_factors.append(factor) + else: + smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) + rope_factors.append(1 / ((1 - smooth) / factor + smooth)) + + yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), + torch.tensor(rope_factors, dtype=torch.float32)) + + +@Model.register("GraniteForCausalLM") +class GraniteModel(LlamaModel): + """Conversion for IBM's GraniteForCausalLM""" + model_arch = gguf.MODEL_ARCH.GRANITE + + def set_gguf_parameters(self): + """Granite uses standard llama parameters with the following differences: + + - No head_dim support + - New multiplier params: + - attention_scale + - embedding_scale + - residual_scale + - logits_scaling + """ + if head_dim := self.hparams.pop("head_dim", None): + logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim) + super().set_gguf_parameters() + # NOTE: Convert _multiplier params to _scale params for naming + # consistency + if attention_scale := self.hparams.get("attention_multiplier"): + self.gguf_writer.add_attention_scale(attention_scale) + logger.info("gguf: (granite) attention_scale = %s", attention_scale) + if embedding_scale := self.hparams.get("embedding_multiplier"): + self.gguf_writer.add_embedding_scale(embedding_scale) + logger.info("gguf: (granite) embedding_scale = %s", embedding_scale) + if residual_scale := self.hparams.get("residual_multiplier"): + self.gguf_writer.add_residual_scale(residual_scale) + logger.info("gguf: (granite) residual_scale = %s", residual_scale) + if logits_scale := self.hparams.get("logits_scaling"): + self.gguf_writer.add_logit_scale(logits_scale) + logger.info("gguf: (granite) logits_scale = %s", logits_scale) + + +@Model.register("GraniteMoeForCausalLM") +class GraniteMoeModel(GraniteModel): + """Conversion for IBM's GraniteMoeForCausalLM""" + model_arch = gguf.MODEL_ARCH.GRANITE_MOE + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + """In modeling_granitemoe, the JetMoe implementation of parallel experts + is used. This essentially merges w1 and w3 into a single tensor with 2x + the hidden size that is then split during forward. To keep compatibility + with existing mixtral support, we pull them apart here. + """ + + if name.endswith("block_sparse_moe.input_linear.weight"): + ffn_dim = self.hparams["intermediate_size"] + assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size" + gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :] + return [ + (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate), + (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up), + ] + + return super().modify_tensors(data_torch, name, bid) + + +@Model.register("ChameleonForConditionalGeneration") +@Model.register("ChameleonForCausalLM") # obsolete +class ChameleonModel(Model): + model_arch = gguf.MODEL_ARCH.CHAMELEON + + def set_gguf_parameters(self): + super().set_gguf_parameters() + self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False)) + + def set_vocab(self): + self._set_vocab_gpt2() + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + # ignore image tokenizer for now + # TODO: remove this once image support is implemented for Chameleon + if name.startswith("model.vqmodel"): + return [] + + n_head = self.hparams["num_attention_heads"] + n_kv_head = self.hparams.get("num_key_value_heads") + hidden_dim = self.hparams.get("hidden_size") + + if name.endswith(("q_proj.weight", "q_proj.bias")): + data_torch = LlamaModel.permute(data_torch, n_head, n_head) + if name.endswith(("k_proj.weight", "k_proj.bias")): + data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) + if name.endswith(("q_norm.weight", "q_norm.bias")): + data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim) + if name.endswith(("k_norm.weight", "k_norm.bias")): + data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim) + + return [(self.map_tensor_name(name), data_torch)] + + @staticmethod + def _reverse_hf_permute(data_torch, n_heads, hidden_dim): + head_dim = hidden_dim // n_heads + data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1) + data_torch = data_torch.repeat_interleave(n_heads, 0) + return data_torch + + +###### CONVERSION LOGIC ###### + + +# tree of lazy tensors +class LazyTorchTensor(gguf.LazyBase): + _tensor_type = torch.Tensor + # to keep the type-checker happy + dtype: torch.dtype + shape: torch.Size + + # only used when converting a torch.Tensor to a np.ndarray + _dtype_map: dict[torch.dtype, type] = { + torch.float16: np.float16, + torch.float32: np.float32, + } + + # used for safetensors slices + _dtype_str_map: dict[str, torch.dtype] = { + "F64": torch.float64, + "F32": torch.float32, + "BF16": torch.bfloat16, + "F16": torch.float16, + # "U64": torch.uint64, + "I64": torch.int64, + # "U32": torch.uint32, + "I32": torch.int32, + # "U16": torch.uint16, + "I16": torch.int16, + "U8": torch.uint8, + "I8": torch.int8, + "BOOL": torch.bool, + "F8_E4M3": torch.float8_e4m3fn, + "F8_E5M2": torch.float8_e5m2, + } + + def numpy(self) -> gguf.LazyNumpyTensor: + dtype = self._dtype_map[self.dtype] + return gguf.LazyNumpyTensor( + meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape), + args=(self,), + func=(lambda s: s.numpy()) + ) + + @classmethod + def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor: + return torch.empty(size=shape, dtype=dtype, device="meta") + + @classmethod + def from_safetensors_slice(cls, st_slice: Any) -> Tensor: + dtype = cls._dtype_str_map[st_slice.get_dtype()] + shape: tuple[int, ...] = tuple(st_slice.get_shape()) + lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:]) + return cast(torch.Tensor, lazy) + + @classmethod + def __torch_function__(cls, func, types, args=(), kwargs=None): + del types # unused + + if kwargs is None: + kwargs = {} + + if func is torch.Tensor.numpy: + return args[0].numpy() + + return cls._wrap_fn(func)(*args, **kwargs) + + +def parse_args() -> argparse.Namespace: + parser = argparse.ArgumentParser( + description="Convert a huggingface model to a GGML compatible file") + parser.add_argument( + "--vocab-only", action="store_true", + help="extract only the vocab", + ) + parser.add_argument( + "--outfile", type=Path, + help="path to write to; default: based on input. {ftype} will be replaced by the outtype.", + ) + parser.add_argument( + "--outtype", + type=str, + choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], + default="f16", + help= + "output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0," + " tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending" + " on the first loaded tensor type", + ) + parser.add_argument( + "--bigendian", action="store_true", + help="model is executed on big endian machine", + ) + parser.add_argument( + "model", type=Path, + help="directory containing model file", + ) + parser.add_argument( + "--use-temp-file", action="store_true", + help="use the tempfile library while processing (helpful when running out of memory, process killed)", + ) + parser.add_argument( + "--no-lazy", action="store_true", + help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)", + ) + parser.add_argument( + "--model-name", type=str, default=None, + help="name of the model", + ) + parser.add_argument( + "--verbose", action="store_true", + help="increase output verbosity", + ) + parser.add_argument( + "--split-max-tensors", type=int, default=0, + help="max tensors in each split", + ) + parser.add_argument( + "--split-max-size", type=str, default="0", + help="max size per split N(M|G)", + ) + parser.add_argument( + "--dry-run", action="store_true", + help="only print out a split plan and exit, without writing any new files", + ) + parser.add_argument( + "--no-tensor-first-split", action="store_true", + help="do not add tensors to the first split (disabled by default)" + ) + parser.add_argument( + "--metadata", type=Path, + help="Specify the path for an authorship metadata override file" + ) + + return parser.parse_args() + + +def split_str_to_n_bytes(split_str: str) -> int: + if split_str.endswith("K"): + n = int(split_str[:-1]) * 1000 + elif split_str.endswith("M"): + n = int(split_str[:-1]) * 1000 * 1000 + elif split_str.endswith("G"): + n = int(split_str[:-1]) * 1000 * 1000 * 1000 + elif split_str.isnumeric(): + n = int(split_str) + else: + raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G") + + if n < 0: + raise ValueError(f"Invalid split size: {split_str}, must be positive") + + return n + + +def main() -> None: + args = parse_args() + + if args.verbose: + logging.basicConfig(level=logging.DEBUG) + else: + logging.basicConfig(level=logging.INFO) + + dir_model = args.model + + if not dir_model.is_dir(): + logger.error(f'Error: {args.model} is not a directory') + sys.exit(1) + + ftype_map: dict[str, gguf.LlamaFileType] = { + "f32": gguf.LlamaFileType.ALL_F32, + "f16": gguf.LlamaFileType.MOSTLY_F16, + "bf16": gguf.LlamaFileType.MOSTLY_BF16, + "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0, + "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0, + "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0, + "auto": gguf.LlamaFileType.GUESSED, + } + + is_split = args.split_max_tensors > 0 or args.split_max_size != "0" + if args.use_temp_file and is_split: + logger.error("Error: Cannot use temp file when splitting") + sys.exit(1) + + if args.outfile is not None: + fname_out = args.outfile + else: + fname_out = dir_model + + logger.info(f"Loading model: {dir_model.name}") + + hparams = Model.load_hparams(dir_model) + + with torch.inference_mode(): + output_type = ftype_map[args.outtype] + model_architecture = hparams["architectures"][0] + + try: + model_class = Model.from_model_architecture(model_architecture) + except NotImplementedError: + logger.error(f"Model {model_architecture} is not supported") + sys.exit(1) + + from transformers import AutoModelForCausalLM + model = AutoModelForCausalLM.from_pretrained(dir_model) + model_instance = model_class(model, dir_model=dir_model, ftype=output_type, fname_out=fname_out, + is_big_endian=args.bigendian, use_temp_file=args.use_temp_file, + eager=args.no_lazy, + metadata_override=args.metadata, model_name=args.model_name, + split_max_tensors=args.split_max_tensors, + split_max_size=split_str_to_n_bytes(args.split_max_size), + dry_run=args.dry_run, + small_first_shard=args.no_tensor_first_split) + + if args.vocab_only: + logger.info("Exporting model vocab...") + model_instance.write_vocab() + logger.info(f"Model vocab successfully exported to {model_instance.fname_out}") + else: + logger.info("Exporting model...") + model_instance.write() + out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out + logger.info(f"Model successfully exported to {out_path}") + + +if __name__ == '__main__': + main() diff --git a/auto_round/export/export_to_gguf/export.py b/auto_round/export/export_to_gguf/export.py new file mode 100644 index 00000000..742c96c0 --- /dev/null +++ b/auto_round/export/export_to_gguf/export.py @@ -0,0 +1,78 @@ +# Copyright (c) 2024 Intel Corporation +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import sys +import shutil +import torch +from .convert import Model +from auto_round.utils import logger, LazyImport +from pathlib import Path + +gguf = LazyImport("gguf") + + +FTYPE_MAP: dict[str, gguf.LlamaFileType] = { + "f32": gguf.LlamaFileType.ALL_F32, + "f16": gguf.LlamaFileType.MOSTLY_F16, + "bf16": gguf.LlamaFileType.MOSTLY_BF16, + "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0, + "q4_0": gguf.LlamaFileType.MOSTLY_Q4_0, + "q4_1": gguf.LlamaFileType.MOSTLY_Q4_1, + "q4_k": gguf.LlamaFileType.MOSTLY_Q4_K_S, + "auto": gguf.LlamaFileType.GUESSED, + } + +def save_quantized_as_gguf(output_dir, backend="gguf:q4_0", **kwargs): + """Export the model to gguf format.""" + + model = kwargs["model"] + tokenizer = kwargs.get("tokenizer", None) + config = model.config + + tmp_work_dir = Path(os.path.join(output_dir, 'tmp_dir')) + if tokenizer is not None: + tokenizer.save_pretrained(tmp_work_dir) + config.save_pretrained(tmp_work_dir) + + with torch.inference_mode(): + hparams = Model.load_hparams(tmp_work_dir) + model_architecture = hparams["architectures"][0] + try: + model_class = Model.from_model_architecture(model_architecture) + except NotImplementedError: + logger.error(f"Model {model_architecture} is not supported") + sys.exit(1) + model_class = Model.from_model_architecture(model_architecture) + model_name = model.name_or_path.split('/') + if len(model_name[-1]) == 0: + model_name = model_name[-2] + else: + model_name = model_name[-1] + + output_type = backend.split(":")[-1] + output_type = FTYPE_MAP.get(output_type.lower()) + + layer_config = kwargs.get("layer_config") + + model_instance = model_class(model, dir_model=tmp_work_dir, ftype=output_type, fname_out=Path(output_dir), + layer_config=layer_config, is_big_endian=False, model_name=model_name, + split_max_tensors=False, split_max_size=0, dry_run=False, + small_first_shard=False) + model_instance.write() + logger.info(f"Model successfully exported to {model_instance.fname_out}") + + shutil.rmtree(tmp_work_dir, ignore_errors=True) + + return model \ No newline at end of file diff --git a/auto_round/export/export_to_gguf/quant.py b/auto_round/export/export_to_gguf/quant.py new file mode 100644 index 00000000..aa12b6ee --- /dev/null +++ b/auto_round/export/export_to_gguf/quant.py @@ -0,0 +1,101 @@ +# Copyright (c) 2024 Intel Corporation +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np + +QK_K = 256 +GGML_QUANT_SIZES = { + "bf16": (1, 2), + "q4_0": (32, 2 + 16), + "q4_1": (32, 2 + 2 + 16), + "q4_k": (256, 2 + 2 + QK_K // 2 + 12), +} + +GGML_QUANT_BLOCK = {} + +def register_block(name): + def register(cls): + GGML_QUANT_BLOCK[name] = cls + return cls + return register + + +def ggml_quant(data: np.array, ggml_type, scale = None, zp = None): + block_size, type_size = GGML_QUANT_SIZES[ggml_type] + + data = data.astype(np.float32, copy=False) + shape = data.shape + n_blocks = data.size // block_size + blocks = data.reshape((n_blocks, block_size)) + + new_data = GGML_QUANT_BLOCK[ggml_type](blocks, scale, zp) + new_data = new_data.reshape(*shape[:-1], shape[-1] // block_size * type_size) + return new_data + +@register_block("bf16") +def bf16_quant_block(blocks: np.array, scale = None, zp = None): + n = blocks.view(np.uint32) + # force nan to quiet + n = np.where((n & 0x7fffffff) > 0x7f800000, (n & np.uint32(0xffff0000)) | np.uint32(64 << 16), n) + # round to nearest even + n = (np.uint64(n) + (0x7fff + ((n >> 16) & 1))) >> 16 + return n.astype(np.uint16).view(np.uint8) + +@register_block("q4_0") +def q4_0_quant_block(blocks: np.array, scale = None, zp = None): + if scale is not None: + d = scale.reshape((-1,1)) + else: + imax = abs(blocks).argmax(axis=-1, keepdims=True) + max = np.take_along_axis(blocks, imax, axis=-1) + d = max / -8 + with np.errstate(divide="ignore"): + id = np.where(d == 0, 0, 1 / d) + + qs = np.trunc( + (np.float64(blocks) * np.float64(id)) + np.float64(8.5), + dtype=np.float32).astype(np.uint8).clip(0, 15) + + n_blocks = blocks.shape[0] + block_size = GGML_QUANT_SIZES["q4_0"][0] + qs = qs.reshape((n_blocks, 2, block_size // 2)) + qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4)) + + d = d.astype(np.float16).view(np.uint8) + + return np.concatenate([d, qs], axis=-1) + + +@register_block("q4_1") +def q4_1_quant_block(blocks: np.array, scale = None, zp = None): + if scale is not None: + d = scale.reshape((-1,1)) + min = zp.reshape((-1,1)) * d * -1 + else: + max = blocks.max(axis=-1, keepdims=True) + min = blocks.min(axis=-1, keepdims=True) + d = (max - min) / 15 + with np.errstate(divide="ignore"): + id = np.where(d == 0, 0, 1 / d) + + qs = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 15) + + n_blocks = blocks.shape[0] + block_size = GGML_QUANT_SIZES["q4_1"][0] + qs = qs.reshape((n_blocks, 2, block_size // 2)) + qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4)) + + d = d.astype(np.float16).view(np.uint8) + m = min.astype(np.float16).view(np.uint8) + return np.concatenate([d, m, qs], axis=-1) diff --git a/auto_round/script/llm.py b/auto_round/script/llm.py index 186a007e..eee6a1e2 100644 --- a/auto_round/script/llm.py +++ b/auto_round/script/llm.py @@ -253,15 +253,42 @@ def setup_eval_parser(): return args def tune(args): + import re + import torch + import transformers + + from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel, AutoConfig, AutoProcessor + from lm_eval.utils import make_table # pylint: disable=E0401 + + from auto_round import AutoRoundConfig + from auto_round.eval.evaluation import simple_evaluate + from auto_round.utils import detect_device, get_library_version, detect_device_count + from auto_round.utils import logger + tasks = args.tasks if args.format is None: args.format = "auto_round" supported_formats = ["auto_round", "auto_gptq", "auto_awq", "auto_round:auto_gptq", "auto_round:auto_awq", - "auto_gptq:marlin", "itrex", "itrex_xpu", "fake"] - formats = args.format.replace(' ', '').split(",") + "auto_gptq:marlin", "gguf:q4_0", "gguf:q4_1", "itrex", "itrex_xpu", "fake"] + formats = args.format.lower().replace(' ', '').split(",") for format in formats: if format not in supported_formats: raise ValueError(f"{format} is not supported, we only support {supported_formats}") + if format in ["gguf:q4_0", "gguf:q4_1"]: + args.bits = 4 + if args.act_bits <= 8: + logger.warning(f"{args.format} not support for activation quantization.") + if args.group_size != 32: + logger.warning(f"{args.format} not support for group_size: {args.group_size}. " + "Reset group_size to 32.") + args.group_size = 32 + if args.format.endswith("_0") and args.asym: + logger.warning(f"{args.format} not support for asymmetric quantization, will reset to sym.") + args.asym = False + if args.format.endswith("_1") and not args.asym: + logger.warning(f"{args.format} not support for symmetric quantization, will reset to asym.") + args.asym = True + logger.info(f"export format {format}, sym = {not args.asym}, group_size = {args.group_size}") if "auto_gptq" in args.format and args.asym is True: print( @@ -271,8 +298,6 @@ def tune(args): if "marlin" in args.format and args.asym is True: assert False, "marlin backend only supports sym quantization, please remove --asym" - - ##must set this before import torch import os devices = args.device.replace(" ", "").split(',') @@ -298,21 +323,10 @@ def tune(args): if len(devices) > 1: ##for 70B model on single card, use auto will cause some layer offload to cpu use_auto_mapping = True elif args.device == "auto": - use_auto_mapping = True - - import re - import torch - import transformers + use_auto_mapping == True os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" torch.use_deterministic_algorithms(True, warn_only=True) - from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel, AutoConfig, AutoProcessor - from lm_eval.utils import make_table # pylint: disable=E0401 - - from auto_round import AutoRoundConfig - from auto_round.eval.evaluation import simple_evaluate - from auto_round.utils import detect_device, get_library_version, detect_device_count - from auto_round.utils import logger model_name = args.model if model_name[-1] == "/": @@ -470,18 +484,25 @@ def tune(args): format_list = args.format.replace(' ', '').split(',') inplace = False if len(format_list) > 1 else True + eval_folder = None for format_ in format_list: save_format_ = format_.replace(":", "-") save_format_ = save_format_.replace("_", "-") - eval_folder = f'{export_dir}-{save_format_}' - autoround.save_quantized(eval_folder, format=format_, inplace=inplace) + save_folder = f'{export_dir}-{save_format_}' + autoround.save_quantized(save_folder, format=format_, inplace=inplace) + if 'gguf' in format_: + gguf_format = format_.upper().split(":")[-1] + if not any([file.endswith(f"{gguf_format}.gguf") for file in os.listdir(save_folder)]): + logger.error(f"fail to export {format_}") + else: + eval_folder = save_folder lm_eval_version = get_library_version("lm-eval") if isinstance(tasks, str): tasks = tasks.split(',') - if not args.disable_eval: + if not args.disable_eval and eval_folder is not None: logger.info(f"Using lm-eval version {lm_eval_version}") model_args = f"pretrained={eval_folder}" @@ -507,8 +528,7 @@ def tune(args): batch_size=args.eval_bs) print(make_table(res)) - -def eval(args): +def _eval_init(args): import os devices = args.device.replace(" ", "").split(',') parallelism = False @@ -540,13 +560,20 @@ def eval(args): else: device_str = detect_device(args.device.replace(" ", "")) - from auto_round.eval.evaluation import simple_evaluate - model_args = f"pretrained={args.model},trust_remote_code={not args.disable_trust_remote_code}" if parallelism: model_args += ",parallelize=True" + tasks = args.tasks if isinstance(args.tasks, str): tasks = args.tasks.split(',') + + return tasks, model_args, device_str + +def eval(args): + from auto_round.eval.evaluation import simple_evaluate + + tasks, model_args, device_str = _eval_init(args) + res = simple_evaluate( model="hf", model_args=model_args, @@ -557,3 +584,24 @@ def eval(args): from lm_eval.utils import make_table # pylint: disable=E0401 print(make_table(res)) + +def eval_sequence(args): + from auto_round.eval.evaluation import simple_evaluate + tasks, model_args, device_str = _eval_init(args) + + from lm_eval.utils import make_table # pylint: disable=E0401 + res_all = {} + res_keys = ["results", "versions", "n-shot", "higher_is_better"] + for task in tasks: + res = simple_evaluate( + model="hf", + model_args=model_args, + tasks=task, + device=device_str, + batch_size=args.eval_bs) + if not res_all: + res_all = res + else: + for key in res_keys: + res_all[key].update(res[key]) + print(make_table(res_all)) \ No newline at end of file diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 00000000..60bdae88 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,2 @@ +[tool.codespell] +ignore-words = ".azure-pipelines/scripts/codeScan/codespell/autoround_dict.txt" \ No newline at end of file diff --git a/test/test_export.py b/test/test_export.py index 1ffffd53..aa19c89b 100644 --- a/test/test_export.py +++ b/test/test_export.py @@ -159,7 +159,6 @@ def test_autoround_awq_format(self): print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50)[0])) shutil.rmtree("./saved", ignore_errors=True) - def test_autoawq_format(self): try: import awq @@ -220,4 +219,4 @@ def test_autoawq_format(self): # inputs = tokenizer(text, return_tensors="pt").to(model.device) # print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50)[0])) # shutil.rmtree("./saved", ignore_errors=True) - # + # \ No newline at end of file diff --git a/test_cuda/test_gguf.py b/test_cuda/test_gguf.py new file mode 100644 index 00000000..cf1e6046 --- /dev/null +++ b/test_cuda/test_gguf.py @@ -0,0 +1,73 @@ +import os +import shutil +import sys +import unittest + +sys.path.insert(0, "..") +import torch +import transformers +from transformers import AutoModelForCausalLM, AutoTokenizer + +from auto_round import AutoRound + +class LLMDataLoader: + def __init__(self): + self.batch_size = 1 + + def __iter__(self): + for i in range(2): + yield torch.ones([1, 10], dtype=torch.long) + + +class TestAutoRound(unittest.TestCase): + @classmethod + def setUpClass(self): + model_name = "Qwen/Qwen2.5-0.5B-Instruct" + self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", trust_remote_code=True) + self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) + self.llm_dataloader = LLMDataLoader() + + @classmethod + def tearDownClass(self): + shutil.rmtree("./saved", ignore_errors=True) + shutil.rmtree("runs", ignore_errors=True) + + def test_gguf_format(self): + bits, group_size, sym = 4, 32, False + autoround = AutoRound( + self.model, + self.tokenizer, + bits=bits, + group_size=group_size, + sym=sym, + iters=2, + seqlen=2, + nsamples=2, + dataset=self.llm_dataloader, + ) + autoround.quantize() + quantized_model_path = "./saved" + autoround.save_quantized(output_dir=quantized_model_path, format="gguf:q4_1") + + from llama_cpp import Llama + llm = Llama("saved/Qwen2.5-0.5B-Instruct-Q4_1.gguf", n_gpu_layers=-1) + output = llm("There is a girl who likes adventure,", max_tokens=32) + print(output) + + save_dir = os.path.join(os.path.dirname(__file__), "saved") + model_path = "Qwen/Qwen2.5-0.5B-Instruct" + res = os.system( + f"cd .. && {sys.executable} -m auto_round --model {model_path} --iter 2 " + f"--output_dir {save_dir} --nsample 2 --format gguf:q4_0 --device 0" + ) + print(save_dir) + self.assertFalse(res > 0 or res == -1, msg="qwen2 tuning fail") + + from llama_cpp import Llama + llm = Llama("saved/Qwen2.5-0.5B-Instruct-w4g32-gguf-q4-0/Qwen2.5-0.5B-Instruct-Q4_0.gguf", n_gpu_layers=-1) + output = llm("There is a girl who likes adventure,", max_tokens=32) + print(output) + + +if __name__ == "__main__": + unittest.main() \ No newline at end of file