-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
158 lines (128 loc) · 4.75 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision.utils import save_image
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import cv2
import os
import glob
from torch.utils import data as D
from torch.utils.data.sampler import SubsetRandomSampler
from torch.utils.data import random_split
import random
from torch.utils.data import Dataset, DataLoader
import pandas as pd
from torchvision.models import mobilenet_v3_small, mobilenet_v2
import matplotlib.pyplot as plt
from tqdm import tqdm
from torchsummary import summary
device = torch.device("mps")
class DeblurNet(nn.Module):
def __init__(self):
super(DeblurNet, self).__init__()
self.backbone = mobilenet_v3_small(pretrained=True)
for name, para in self.backbone.named_parameters():
para.requires_grad = False
classifier = nn.Sequential(
nn.Linear(in_features=576, out_features=50, bias=True),
nn.Hardswish(),
nn.Linear(in_features=50, out_features=1, bias=True),
)
self.backbone.classifier = classifier
# summary(self.backbone,input_size=(3,224,224))
def forward(self, x):
return self.backbone(x)
def deblur_compare(im1, im2):
model = DeblurNet()
model.load_state_dict(torch.load("./deblurnet.pth"))
model.to(device)
model.eval()
tr = transforms.ToTensor()
image = cv2.resize(cv2.cvtColor(im1, cv2.COLOR_BGR2RGB), (224, 224))
image = tr(image).to(torch.float32).unsqueeze(0).to(device)
with torch.no_grad():
res = model(image).cpu().detach().numpy()[0][0]
return res
class BlurDataset(Dataset):
"""Face Landmarks dataset."""
def __init__(self, eval_dataset ="rsblur", transform=None):
"""
Args:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.data = pd.read_csv(f"subj_{eval_dataset}.csv")
videos = self.data.video.unique()
self.root_dir = f"./crops_{eval_dataset}"
self.paths = []
for video in videos:
lst = os.listdir(os.path.join(self.root_dir, video))
for name in lst:
self.paths.append((video, name))
self.transform = transform
def __len__(self):
return len(self.paths)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
video, name = self.paths[idx]
image = cv2.imread(os.path.join(self.root_dir, video, name))
image = cv2.resize(cv2.cvtColor(image, cv2.COLOR_BGR2RGB), (224, 224))
tr = transforms.ToTensor()
image = tr(image)
name = name.replace(".png", '')
data_test = self.data[self.data.video == video]
label = data_test.loc[data_test.method == name].value.values[0]
if self.transform:
image = self.transform(image)
return image.to(torch.float32), torch.from_numpy(np.array([label])).to(torch.float32)
batch_size = 128
validation_ratio = 0.1
random_seed = 10
if __name__ == '__main__':
DeblurNet()
net = DeblurNet()
dataset = BlurDataset()
train, valid = random_split(dataset, [1 - validation_ratio, validation_ratio])
train_loader = DataLoader(train, batch_size=batch_size, shuffle=True, num_workers=0)
valid_loader = DataLoader(valid, batch_size=batch_size, shuffle=False, num_workers=0)
lr = 0.001
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=lr)
device = torch.device("mps")
print(device)
net.to(device)
min_ble = torch.inf
for epoch in range(1000):
running_loss = 0.0
for data in tqdm(train_loader):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
running_loss += loss
loss.backward()
optimizer.step()
running_loss /= len(train_loader)
print(running_loss)
total = 0
correct = 0
ble = 0
for data in tqdm(valid_loader):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
outputs = net(inputs)
predicted = outputs.data
ble += torch.abs(predicted - labels).sum()
if ble < min_ble:
torch.save(net.state_dict(), "deblurnet2.pth")
print('[%d epoch] Sum Error of the network on the validation images: %d' %
(epoch, ble)
)
print('Finished Training')