-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
82 lines (66 loc) · 1.69 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import cv2
import pandas as pd
from tqdm import tqdm
from pathos.multiprocessing import Pool
from metric import *
from model import deblur_compare
def prepare_row(record):
img1 = cv2.imread(os.path.join(f"crops_{dataset}", record.video, f"{record.method}.png"))
img2 = cv2.imread(os.path.join(f"crops_{dataset}", record.video, "real_blur.png"))
record = {
"method": record.method,
"value": record.value,
"video": record.video,
}
for component in components:
result = component(img1, img2)
if type(result) is list:
for i, elem in enumerate(result):
record[component.__name__ + str(i)] = elem
else:
record[component.__name__] = result
return record
components = [
laplac_calc,
fft_calc,
haff_calc,
sobel_calc,
hog_calc,
lbp_calc,
gabor_calc,
ssim_calc,
haar_calc,
color_calc,
tenengrad_calc,
lapm_calc,
laple_calc,
log_calc,
sharr_calc,
hist_cmp,
saliency_calc,
reblur_calc,
# optical_calc,
# fft2_calc,
# lpips_calc,
# regression,
# # clache_calc,
# ssim_blurriness_metric,
# vif_blurriness_metric,
# vollath_blurriness_metric
# wavelet_blurriness_metric,
# fft3
]
names = [
component.__name__
for component in components
]
if __name__ == "__main__":
for dataset in [
"based",
"rsblur",
]:
subj = pd.read_csv(f"subj_{dataset}.csv", index_col=0)
with Pool(8) as pool:
records = list(tqdm(pool.imap(prepare_row, subj.itertuples()), total=len(subj)))
pd.DataFrame(records).to_csv(f"dataset_{dataset}.csv", index=False)