Skip to content

Latest commit

 

History

History
24 lines (22 loc) · 1.01 KB

README.md

File metadata and controls

24 lines (22 loc) · 1.01 KB

Exploratory Data Analysis

A course on exploratory data analysis, course outline for 2020:

  • L1 & 2: Getting started
    • R installation, basics, workflows, visualizing raw data with ggplot
  • L3 & 4: Managing data frames
    • dplyr verbs -- filter, arrange, select, mutate, summarise, group_by
  • L5 & 6: The EDA checklist
    • tabular and graphical univariate data summaries, missing values, outlier detection and treatment, asking the right questions
  • L7 & 8: More managing dataframes
    • reshaping, tidying, joining together data fr
  • L9 & 10: Principles of good graphics (slides)
  • L11 & 12: Principles of good graphics (code, practical)
  • L13 & 14: Exploring spatial data
    • sf, raster, tmap, geom_sf, leaflet
  • L15 & 16: R Shiny, dashboards
  • L17 & 18: Exploring time series data
  • L19 & 20: Interactive graphics and animations
    • plotly, ggplotly, gganimate
  • L21 & 22: Clustering observations and variables
    • cluster analysis, principal component analysis, dimension reduction
  • L23 & 24: Version control
    • Git, GitHub